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numerical fluxes for the physical conservation laws allows to derive a scheme that is com-
patible with the geometric conservation law (GCL). Fluxes are computed using a nodal sol-
ver which can be viewed as a two-dimensional extension of an approximate Riemann
solver. The first-order scheme is conservative for momentum and total energy, and satisfies
a local entropy inequality in its semi-discrete form. The two-dimensional high-order
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1. Introduction

We are interested in solving the two-dimensional compressible gas dynamics equations written in the Lagrangian form.
In this paper, we aim to present an original high-order cell-centered scheme devoted to this task. This scheme consists of the
non-trivial high-order extension of the first-order Lagrangian scheme presented in [29]. The two-dimensional high-order
extension is constructed using the generalized Riemann problem (GRP) methodology, which was introduced by Ben-Artzi
and Falcovitz in [5,7] following the pioneering work of van Leer [41].

In Lagrangian hydrodynamics methods, a computational cell moves with the flow velocity. In practice, this means that the
cell vertices move with a computed velocity, the cell faces being uniquely specified by the vertex positions. This ensures that
there is no mass flux crossing the boundary of the Lagrangian moving cell. Thus, Lagrangian methods can capture contact
discontinuity sharply in multimaterial fluid flows. However, in the Lagrangian framework, one has to discretize not only
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the gas dynamics equations but also the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the
physical conservation laws must be determined in a compatible way with the vertex velocity so that the geometric conser-
vation law (GCL) is satisfied, namely the rate of change of a Lagrangian volume has to be computed coherently with the node
motion. This critical requirement is the cornerstone of any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in which position, velocity and kinetic
energy are centered at points, while density, pressure and internal energy are within cells. The dissipation of kinetic energy
into internal energy through shock waves is ensured by an artificial viscosity term. Since the seminal works of von Neumann
and Richtmyer [43], and Wilkins [44], many developments have been made in order to improve the accuracy and the robust-
ness of staggered hydrodynamics [12,10,8]. More specifically, the construction of a compatible staggered discretization leads
to a scheme that conserves total energy in a rigorous manner [11,9].

We note also the recent development of a variational multi-scale stabilized approach in finite element computation of
Lagrangian hydrodynamics, where a piecewise linear approximation was adopted for the variables [36,35]. The case of
Q1/PO finite element is studied in [37], where the kinematic variables are represented using a piecewise linear continuous
approximation, while the thermodynamic variables utilize a piecewise constant representation.

An alternative to the previous discretizations is to derive a Lagrangian scheme based on the Godunov method [21]. In
comparison to staggered discretizations, Godunov-type methods exhibit the good property of being naturally conservative,
they do not need an artificial viscosity and they allow a straightforward implementation of conservative remapping methods
when they are used in the context of the Arbitrary Lagrangian Eulerian (ALE) strategy. In the Godunov-type method ap-
proach, all conserved quantities, including momentum, and hence cell velocity are cell-centered. The cell-face quantities,
including a face-normal component of the velocity, are available from the solution of an approximate Riemann problem
at each cell face. However, it remains to determine the vertex velocity in order to move the mesh. In [1], Dukowicz has pro-
posed to use a weighted least squares algorithm to compute the vertex velocity by requiring that the vertex velocity pro-
jected in the direction of a face normal should equal the Riemann velocity on that face. It turns out that this algorithm is
capable of generating additional spurious components in the vertex velocity field. Hence, it leads to an artificial grid motion
which requires a very expensive treatment [19]. This flaw comes probably from the fact that the flux computation is not
compatible with the node displacement, and hence the GCL is not satisfied. An important achievement concerning the com-
patibility between flux discretization and vertex velocity computation has been introduced by Després and Mazeran [17]. In
this paper, they present a scheme in which the interface fluxes and the node velocity are computed coherently thanks to an
approximate Riemann solver located at the nodes. This original approach leads to a first-order conservative scheme which
satisfies a local semi-discrete entropy inequality. The multi-dimensional high-order extension of this scheme is developed in
[13]. A thorough study of the properties of the Després—Mazeran nodal solver shows a strong sensitivity to the cell aspect
ratio, refer to [29], which can lead to severe numerical instabilities. This drawback is critical for real-life Lagrangian compu-
tations in which the grid often contains high aspect ratio cells. To overcome this difficulty, Maire et al. [29] have proposed an
alternative scheme that successfully solves the aspect ratio problem and keeps the compatibility between fluxes discretiza-
tion and vertices velocity computation. This first-order scheme also conserves momentum, total energy, and fulfills a local
entropy inequality. Its main feature lies in the discretization of the pressure gradient, which is designed using two pressures
at each node of a cell, each nodal pressure being associated with the direction of the unit outward normals related to the
edges originating from the node. These nodal pressures are linked to the nodal velocity thanks to half-Riemann problems.

In the present paper, we describe the high-order extension of the previous cell-centered scheme. This high-order exten-
sion is derived using a one-step time integrator, based on the GRP method, which is cheaper than the classical two-steps
Runge-Kutta procedure. The present approach consists in solving the high-order Riemann problem with piecewise linear
polynomials, whereby the approximate solution is given as a time power series expansion right at the interface, thus pro-
viding a numerical flux for high-order Godunov methods. We have implemented the acoustic version of the GRP method,
and extended it to the framework of our two-dimensional approximate Riemann solver located at the node. Hence, we
get an acoustic generalized Riemann solver located at nodes, which enables us to compute the time derivatives of the nodal
velocity and pressures, needed for the high-order flux computation. This solver is simple, robust and can handle tabulated
equations of state provided that the isentropic sound speed is available. In addition, for one-dimensional flows aligned with
the grid, it recovers the one-dimensional acoustic GRP scheme derived by Ben-Artzi and Falcovitz in their monograph [7].

The remainder of this paper is structured as follows: the governing equations of Lagrangian hydrodynamics are described
in Section 2. For sake of completeness, the first-order discretization is revisited in Section 3. We also introduce the concept of
sub-cell forces, borrowed from the staggered discretization framework [11], in order to derive a general form of the cell-cen-
tered discretization. The acoustic GRP high-order extension of the scheme is detailed in Section 4. Criteria for time step lim-
itation are presented in Section 5. Extensive numerical experiments are reported in Section 6. They show not only the
robustness and the accuracy of the present method but also its ability to handle successfully complex two-dimensional
flows. More specifically, we show that our method satisfies the requirement of wavefront invariance and is able to compute
properly isentropic compression [10]. Concluding remarks and perspectives are given in Section 7.

2. Lagrangian hydrodynamics

Let D be an open subset of R?, filled with an inviscid ideal fluid and equipped with the orthonormal frame (0,X,Y) and the
orthonormal basis (ex, ey). We also define the unit vector e; = ex x ey. We are interested in discretizing the equations of the
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Lagrangian hydrodynamics. It is convenient, from the point of view of subsequent discretization to write the unsteady com-
pressible gas dynamics equations in the control volume formulation which holds for an arbitrary moving control volume. In
the Lagrangian formalism the rates of change of mass, volume, momentum and total energy are computed assuming that the
computational volumes are following the material motion. This leads to the following set of equations:

d Z
a v =0, 1a
i mﬂ (1a)
d Z Z
4 gv-  U.Nds=O, (1b)
dt v )
d Z Z
S pudv+  PNAS=0, (10)
dt v S()

Z Z
& pEdV+  PU-NdV =0, (1d)
dt v s(t)

where 4 denotes the material, or Lagrangian, time derivative. Here, V(t) is the moving control volume, and S(t) its boundary.
0, U = (u,v)", P, E are the mass density, velocity, pressure and specific total energy of the fluid. N denotes the unit outward
normal vector to the moving boundary S(t). Egs. (1a)-(1c) express the conservation of mass, momentum and total energy.
We note that volume variation Eq. (1b) is also named geometric conservation law (GCL) and, it is equivalent to the local kine-
matic equation

dX
G-U X0 =x 2)
where X stands for coordinates defining the control volume surface at time ¢t > 0 and x stands for coordinates at time t = 0.
Then, X = X(x,t) is implicitly defined by the local kinematic equation, which is also called the trajectory equation. This en-
ables us to define the map

M, :V(0) — V()
x— X(x,0),
where X is the unique solution of (2). With fixed t, this map advances each fluid particle from its position at time t = 0 to its

position at time t. Let J be the determinant of the Jacobian matrix of this map. Then, time differentiation of J gives the classical
equation [14]

a
dt
which is nothing but the local version of the GCL Eq. (1b).

The thermodynamical closure of the set of Eq. (1) is obtained by the addition of an equation of state which is taken to be of
the form

P=P(p,e), (3)

where the specific internal energy, ¢, is related to the specific total energy by ¢ = E — 1 |U||%. The set of previous equations is
referred to as the Lagrangian integral form of the Euler equations and can be found in many papers [1].

JV.U=0,

Comment 1. We notice that Eq. (1a) implies that the mass of the control volume remains constant.

3. First-order spatial discretization
3.1. Notations and assumptions

Let us consider the physical domain V(0) that is initially filled with the fluid. We assume that we can map it by a set of
polygonal cells without gaps or overlaps. Each cell is assigned a unique index c, and is denoted by Q.(0). Using the M; map
previously defined, we set Q.(t) = M,[Q.(0)]. Here, we assume that Q.(t) is still a polygon, that is, the M; map is a contin-
uous and linear function over each element of the mesh. Each point (vertex) of the mesh is assigned a unique index p and we
denote by P(c) the counterclockwise ordered list of points of cell c.

3.2. Face flux discretization for the polygonal cell Q.(t)
To get the discrete evolution equations for the primary variables %, U,E we apply the control volume formulation (1) to

the polygonal cell Q.(t). Let m. denotes the mass of the cell: it is constant according to (1). For a flow variable ¢, we introduce
its mass averaged value over the cell Q.(t)
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1 A
b= m peav.

€ Qct)

Then, system (1) is written

d 1 pun—o 4
mca - - fUp - Ny = U, (4a)
¢ feF()
d X c CN\JC b
meUe+  LiIIN; =0, (4b)
feF(o)
d x c C C
me B+ Li(IIU);-N; =0. (4¢)
feF(o)

Here, we have used the index f to denote a generic face of the cell c, L; is the length of this face and N; its unit outward normal
and F(c) is theZ set of faces of cell c, cf. Fig. 1. We have also introduced the face fluxes U}, 1}, (ITU); which are defined as

Ui = L s, (5a)
17
1

I = I PdS, (5b)
TS

(HU); = lf PUGS. (5¢)

Ly
The local kinematic equation in its discrete form at point p is written
d
EX" =U,, X,(0)=x,, (6)

where X, = (X,,Y,)" denotes the coordinates of point p at time ¢ > 0, x, its initial position and U, its velocity.
System (4) represents the face flux discretization of the Lagrangian hydrodynamics equations for the discrete variables
pi,Uc,EC . In order to compute the time evolution of the flow variables, we need to calculate the face fluxes U}, H; and

(HU)}. Moreover, we also need to compute the point velocity U, to move the mesh.
Comment 2. Eq.(4a)is not only a physical conservation law but also a geometrical one since ’/’j— =V, where V. is the volume

of the cell c. The face flux U} related to this equation must be computed consistently with the point velocity U, so that the
volume variation remains coherent with the mesh motion. This critical question is addressed in the next section.

3.3. Compatible discretization of the GCL

Since m./p. = V. Eq. (4a) can be rewritten

dv.

x crrc C

feF(e)

The volume of cell ¢, V¢, is a function of the coordinates X, of point p for p € P(c). We compute this volume by performing the
triangular decomposition of the cell displayed in Fig. 2

Fig. 1. Notations related to the polygonal cell Q.(t).
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1 X
chf (XPXX+)-ez.

peP(c)
The time differentiation of this equation leads to

ave > 1
dar - E(LPP’NPP’ + LppNpp+) - Up, (7)
peP(c)
where the lengths L,,-, L,,+ and the unit outward normal N,,-, Np,+ are related to the edges [p,p~] and [p,p*], see Fig. 2. By
shifting indices in the previous summation, Eq. (7) becomes

av, X 1
dtc = Lpp*”zap* )
peP(c)

U, +Up+). (8)

Now, the comparison between Eqgs. (4a) and (8) shows that they are equivalent under the condition that the face velocity is
written

§ =2 (U, + Uy), )

where the face f corresponds to the edge [p, p*]. We remark that this condition amounts to a linear interpolation of the veloc-
ity along the edge [p, p*]. The only way to satisfy the compatibility condition (9) consists in first computing the point velocity
U, then, deducing the face velocity U;. By proceeding in this manner, the compatibility of the face discretization of the GCL
with the rate of change of the cell volume is ensured. Let us introduce the following notations (see Fig. 2)

1

LE = ijp*v N; =Ny,
1
L; = ZLW., Ng = Npp+,
then, Eq. (7) writes:
<
dthc = (L;Nf, + LgNg) -U,. (10)
peP() T T

Comment 3. Following Shashkov [38], we introduce (V - U), the discrete divergence operator over cell ¢
(V-U),=— U - NdS.

Combining the previous results and this definition we get

1dv., 1 X 1
= = %%+@%ymzw

v.uy = LdVe_
V-Ue=y 4 Ve e

LpeNpe - Uy,

peP(c)

where N, stands for the unit corner vector defined by L,:N,. = L;Nf, + L;N;. We have recovered the compatible discretiza-
tion of the divergence operator currently used in the derivation of the compatible Lagrangian hydrodynamics scheme [11].

o & b

Fig. 2. Triangular decomposition of the polygonal cell Q.(t).
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3.4. Computation of the momentum flux

To ensure consistency with the GCL discretization we propose to discretize the momentum flux by introducing two pres-
sures at each node p of cell c. These pressures are denoted IT, and ITj, see Fig. 3, they can be seen as nodal pressures viewed
from cell ¢ and related to the two edges impinging at node p. Using these nodal pressures, we propose the following defini-

tion of the discrete gradient operator over the cell ¢

_ 1 = ¢ 17¢ NIC ¢ 7¢ NC
(VP), = — LpHpr + LN, .
€ peP(o)
This definition is compatible with the previous result related to the discrete divergence operator. Using the discrete gradient

operator, the momentum equation is rewritten

d

>
me 3 Uc + LSITENS + LSITENS = 0. (11)

pp P PP P
peP(c)

We have obtained a nodal flux discretization for the momentum equation which is equivalent to its face flux discretization

(4b) provided that the momentum face flux is written

1

5(

Once again, we note that this condition amounts to a linear interpolation of the pressure along face f = [p,p*].
The examination of the right-hand side of Eq. (11) allows a mechanical interpretation by introducing the force

I} = 5 (IT, +H§+).

Fp. = L;HPN; + LCHCNC (12)

This force is a sub-cell force related to point p and cell c. Using this definition, the momentum equation can also be written
d >

me . Ue + F,.=0. (13)
peP(c)

To close this section, we show how to express the nodal pressures. Since the velocity of the edges [p,p~] and [p,p], in the
vicinity of point p, is equal to the nodal velocity U,, the nodal pressures are computed using the following half approximate
Riemann problems

P. — I15 = Zy(U, - U,) - Ny, (14a)
P. — IS = Z5(U, — U,) - N5, (14b)

Here, Z;, Z;, are mass fluxes swept by the waves. To determine these coefficients we follow the approach suggested by Du-
kowicz [18] by setting
Z; = p.ac+T'c|(U, —U,) ~Nf_,|], (15a)
Z5 = plac + Ie|(U, — U,) - N, (15b)
where a. is the local isentropic speed of sound and I'. is a material-dependent parameter that is given in terms of the density

ratio in the limit of very strong shocks. In the case of gamma law gas one gets I'c = # We note that for I'. = 0, we recover
the classical acoustic approximation and the coefficients Z, and Z; reduce to the acoustic impedance of cell c.

o

p

Fig. 3. Localization of the nodal pressures given by the half Riemann problems at point p viewed from cell ..
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Utilizing (14), the sub-cell force can be rewritten
ch :chPchc*Mpc(Up*Uc)y (16)

where LNy = L;N; + L;N; is the corner vector related to point p and cell ¢, and M, = Z;L;(N“, ®N“,) +Z§L§(N‘§ ®N§) is a
2 x 2 symmetric positive definite matrix. The second term in the right-hand side of Eq. (16) can be viewed as the tensorial
part of the sub-cell force.

Comment 4. We have introduced two pressures at node p, each pressure being associated with the unit outward normal
related to the two edges of cell c impinging at point p. Instead of that, one can introduce only one pressure at point p. This
pressure is determined by the half Riemann problem defined in the direction of the unit corner vector Ny,

Pc - Hpc = Zc(Up - Uc) 'Npc’ (17)

where Z, is the acoustic impedance of cell c.

This amounts to define only one nodal pressure IT,. for each cell that surrounds point p. Using the unit corner vector Ny
in the definition of the half Riemann problem, we have recovered the approach developed in [17]. The sub-cell force
corresponding to this single nodal pressure I, reads

ppc = chnchpf = chPchc - rq'pC(Up -Uo),

where Mpc = LpcZcNpe @ Ny is a 2 x 2 symmetric positive matrix. We note that this sub-cell force is always colinear to the
geometric direction N, of the unit corner vector. Moreover, its tensorial part is different from the one of sub-cell force
F,.. For numerical applications, it appears that the approach proposed in [17] exhibits a strong dependence to the cell aspect
ratio as it has been noticed in [29].

3.5. Computation of the total energy flux

The total energy flux computation is performed by using the previous mechanical interpretation based on the sub-cell
force Fp. Thus, the time rate of change of total energy is equal to the summation of the works performed by the sub-cell
forces over the cell ¢

d >
mcaEC+ F,.-U, =0. (18)
PEP(c)
The substitution of the sub-cell force definition (12) in the previous equation leads to the following node flux discretization
of the total energy equation
d X c C ©NJC c C NJC
me o Ee + (LIT,N, + L,IT;NG) - U, = 0. (19)
PEP(c)
We claim that this node flux discretization is equivalent to the face flux discretization (4c) provided that the total energy flux
is written
1

(ITU); = 5 (IT,U, + 1T, Uy ).

3.6. Node flux discretization for the polygonal cell Q.(t)

Gathering the results from previous sections, we write the semi-discrete evolution equations for the unknowns

1 U E.
d 1 x C pJC C pJC
mc& _c - ( )(LENE +L;Ny) - U, =0, (20a)
peP(c
d X C C NJC C C NJC
mcauc + ( )(LBHENE + L, II;N;) =0, (20b)
peP(c
d X c C Cc C
mcaEC + (LBHENE + LﬁngNI—,) ‘U, =0. (20c)

PEP(c)

This system is based on a node flux discretization, it is equivalent to system (4) provided that the face fluxes are written

1
;ZE(UP+UP+)7 (Z]a)
1
I1§ = 3 (IT5 + 115, 21b)
¢ 1
(U} = 5 (115U, + 115, Uy, (21¢)
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where face f represents the edge [p,p*], see Fig. 3. We recall that the nodal pressures are expressed as a function of the node
velocity by using the half approximate Riemann problems (14). The displacement of the mesh is governed by the local kine-
matic equation written in discrete form at point p (6).

To close system (20) we need to determine the point velocity U,. This goal will be achieved next section constructing a
nodal solver.

3.7. Construction of a nodal solver

The aim of this section is to construct a nodal solver in order to compute the nodal velocity and the nodal pressures.
The evaluation of these nodal quantities relies on an argument of conservation concerning both momentum and total
energy.

3.7.1. Momentum and total energy conservation
First, let us show why the interface pressure on each face is not uniquely defined, contrary to the classical finite volume
approach. Consider the face [p,q] shared by the cells Q. and Q. As it is displayed in Fig. 4, we have two nodal pressures on
(o

[p.q] viewed from cell c: IT;, IT;, and two nodal pressures on [p,q] viewed from cell d : Hﬁ, Hg. The nodal pressures related to
node p are written according to Eq. (14) -

P.— 1y =Z(U, - U,) - N,
Py — Iy = —Z4(U, — Ug) - N.

Note that here, in order to simplify the computations, we have used the acoustic approximate Riemann solver. Hence, Z, Z,
denote the acoustic impedance of cells ¢ and d.
By subtracting the second equation from the first one we obtain

Hg—ng = (Ze+Za)(Up - Ny - V), (22)
where V is nothing but the normal component of the Riemann velocity

:ZCUC+ZdUd. g_Pd*Pc
ZC+Zd P Zc+Zd.

This velocity corresponds to the one-dimensional solution of the acoustic Riemann problem in the direction of the unit nor-
mal N;. Eq. (22) shows that the nodal pressures are equal if and only if the projection of the node velocity onto the unit nor-
mal is equal to the one-dimensional normal component of the Riemann velocity. Since in general U, - N; > V, we have the
discontinuity 175 # II;. The discontinuity of these nodal pressures across the face implies the loss of momentum and total
energy conservation, on the contrary to the 1-D Riemann solver classical approach. We shall show hereafter how to recover
momentum and total energy conservation by imposing an additional constraint which will be the main ingredient to con-
struct the nodal solver.

To examine momentum conservation, let us write the global balance of momentum without taking into account the
boundary conditions. The summation of the momentum Eq. (13) over all the cells c leads to

1%

1
d X X X
& ma = F.. (23)

¢ peP(c)

Up

Fig. 4. Nodal pressures related to the face [p,q] shared by cells Q. and Q.
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Switching the summation over cells and the summation over nodes in right-hand side of (23) one gets
1
d X i X< X
a mcuc = - Fpm
P ceCp)

where C(p) is the set of the cells around point p. Then, momentum conservation is ensured provided that the sub-cell forces
satisfy the condition
X

F,. = 0. (24)

cec(p)

We claim that, if this condition is satisfied then total energy is also conserved. To demonstrate this property we perform the
summation of the total energy Eq. (18) over all the cells ¢
1
d X i X X
i mE. =- Fp - Up.

c ¢ peP(o)
Then, we switch again the summation over cells and the summation over nodes in right-hand side to get
1
d X X< X
a meE. =-— F,e -U,.
c D ceC(p)

Due to (24) the term between parentheses in the right-hand side is null and the total energy is conserved.
We note that the sufficient condition (24) expresses the balance of the sub-cell forces around point p (refer to Fig. 5).
Using the definition of the sub-cell force it can be rewritten

(LoITSN; + LS TTENG) = 0. (25)
ceC(p)

Now, using the equation of the sub-cell force (16) in which nodal pressures are expressed thanks to the half Riemann prob-
lems, we obtain the final form

[LpcPcNpe = Mpe(Up — U,)] = 0. (26)

ceC(p)

We recall that LpcNpe = L;Nf, + Lf,Nf7 is the corner vector related to point p, cell ¢ and M. = Z;LE(Nf_, ® NE) +Z,L(N; © Np) is a
2 x 2 symmetric positive definite matrix.

The sufficient condition to ensure momentum and total energy conservation exhibits, in its final form, a vectorial equa-
tion satisfied by the point velocity U,. This equation allows to construct a nodal solver.

3.7.2. The nodal ﬁglver

Setting My = = ¢, Mpc the system satisfied by the point velocity U, is written

M,U, = (LpcPcNpe + MpcUe). (27)

ceC(p)
We remark that the M, matrix is symmetric positive definite by construction, hence it is always invertible. If we use the
acoustic approximation (coefficient I'. =0 in Eq. (15)), the mass swept fluxes reduce to the acoustic impedance, i.e.
Z, =Z; = Z,, then the system (27) becomes linear and it admits a unique solution. It has been showed in [29] that this

Fig. 5. Notations related to the nodal solver at point p.
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two-dimensional acoustic solver reduces to the classical one-dimensional Godunov acoustic solver for one-dimensional
flows either for Cartesian or cylindrical grid aligned with the flow. In the general case corresponding to I'. # 0, system
(27) is non-linear due to the dependence of the mass swept fluxes to the point velocity. Therefore, U, has to be computed
by using an iterative procedure such as a fixed point algorithm. From a theoretical point of view, we cannot show conver-
gence of such an algorithm. However, in numerical applications, we have found that few iterations are needed to get the
convergence. Regardless of the type of approximation used, the expressions for the point velocity and the pressure fluxes
can be written

-1 x
U, =M, (LpcPcNpe + MpcU,), (28a)
ceC(p)
P. — I'l; = Z;(U,, -U,) -N;, (28b)
P. — IS = Z5(U, — Uc) - N, (28¢)

Comment 5. It is interesting to realize that this nodal solver only needs the knowledge of the isentropic speed of sound: it is
very easy to extend it to more general equation of state. The precise form of the equation of state, analytical or tabulated,
does not matter provided that the speed of sound is known.

3.8. Summary

In this section, we give a summary of the semi-discrete evolution equations that constitute a closed set for the unknowns
L U.E
Pe El cy L

d 1 X CpNC CnN©
mege = = (LN +LN;) U, =0,
€ peP@ T
d x
me pUc+ (LN, + LIT;N;) =0,
pePle) T T T
d x
me B+ (LILN, + LITN;) - U, =0.
t peP() — T T

The discrete kinematic equation

d

axp =U,, Xp(0)=x%,

enables us to compute the mesh motion. The point velocity U, and the nodal pressures are obtained thanks to the nodal
solver

>
Up=M," " (LpePNpe + MycUo),

ceC(p)
P — IT5 = Zy(U, - U) - Ny,
P. — IS = Z5(U, - U,) - NS,

where the 2 x 2 matrices, My and M,, are written
>
Mpe = Z;L;(Nf, ® N,‘,) + Z;L;(Nf, ® NIC,), M, = Mpe. (29)
- N ceC(p)
We recall that the swept mass fluxes Z, and Z; are defined by (15).
Finally, we have obtained a first-order cell-centered discretization of the Lagrangian hydrodynamics equations based on a
node flux discretization. The fluxes and the mesh motion are computed in a compatible way thanks to a nodal solver that
uniquely provides the point velocity and the nodal pressures.

Comment 6. In the Lagrangian formalism, we have to consider two types of boundary conditions on the border of the
domain D: either the pressure or the normal component of the velocity is prescribed. Here, we do not detail the
implementation of these boundary conditions. Let us notice that they are consistent with our nodal solver. For a detailed
presentation about this topic the reader can refer to [29].

3.9. Entropy inequality

We show that our first-order Lagrangian scheme in its semi-discrete form satisfies a local entropy inequality. Using the
Gibbs formula [16], we compute the time rate of change of the specific entropy o. in cell ¢
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do. de, d 1
chcE*mc E‘FPCE p_c ) (30)

where T, denotes the mean temperature of the cell. Thanks to the definition of the internal energy this equation is rewritten

do. dE. du. d 1
T.220¢ bl § S p.- =
mele~gp =me ¢~ Ve TP 0,
We dot-multiply momentum Eq. (13) by U, and subtract it from the total energy Eq. (18) to get
dE du >
me —-U. - —= =— Fp. - (U, —U,).
dt dt
PEP(C)

The pressure work is computed by multiplying (20a) by P,

d 1

< <
PCE - = LpcPcNpe - Up = LypcPcNpe - (Up = U).
Pe

peP(c) peP(c)
Here, we have introduced the corner vector LNy, = L;N; + L%Ng related to point p. The last line of the previous equation

comes from the fact that for a closed polygon we have
>
LpcNpe = 0.

peP(c)
Finally, the combination of the previous results leads to

do.

>
c gt = (LpcPNpe = Fye) - (U, = Up). (31)

peP(c)

m.T

With the help of the half Riemann problems (14), we have previously seen that the sub-cell force can be written
Fyc = LycPcNpe — M (U, — U,), using this, we deduce the final expression for the time rate of change of the specific entropy
within cell ¢

deac

X
e = MPC(UP -U.)- (Up -Uo). (32)

PeP(c)

Since the 2 x 2 matrix M, is symmetric positive definite, the right-hand side of (32) is a quadratic form which is always po-
sitive. Consequently, our scheme is such that entropy increases in the cell c, that is % > 0. This important property ensures
that the kinetic energy is properly dissipated in internal energy. The examination of (32) right-hand side shows a tensorial
structure of the entropy dissipation rate which is quite similar to the artificial viscosity used in two-dimensional staggered
Lagrangian schemes [8,10].

Comment 7. We note that Eq. (31) is quite general and has been obtained regardless the expression of the sub-cell force.
Thus, it can be used to derive the entropy production corresponding to the scheme developed by Després and Mazeran [17].
In this case the sub-cell force is written Ppc = LycPcNpe — R,c(U, — Uc) where B,c = Ly ZcNpe @ Ny (refer to Comment 4).
This choice provides the entropy production

do.

x
g = MU, -U (U, - U,

PEP(c)

mcT,

The discrepancy corresponding to the entropy production between our scheme and the one proposed in [17] comes from the
definition of the corner matrices M, and MPC. The entropy production of our scheme can only go to zero for uniform flows
because the matrix M, is definite positive. In the case of the scheme developed by Després and Mazeran, the entropy pro-
duction can go to zero even for non uniform flows such that (U, — U,) L N, since ker(M,,) is spanned by N;C. This fact prob-
ably explains why the Després-Mazeran scheme can exhibit, for certain flows, severe numerical instabilities such as
hourglass modes [13,33].

Comment 8. We must admit that our entropy production term is always active even in the case of isentropic flows. For such

flows our scheme does not conserve entropy. This property is typical from Godunov-type schemes. However, this extra
entropy production can be dramatically decreased by using a high-order extension of the scheme as we shall see in Section

3.10. Discretization based on sub-cell forces

Throughout this paper we have used the sub-cell forces formalism. This general formalism is very useful and has been
first introduced in [9,11] in the framework of staggered Lagrangian scheme. It turns out that this formalism can also be fruit-
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fully utilized in the cell-centered Lagrangian scheme framework. In this context, we show that the sub-cell force formalism is
the cornerstone to design a numerical scheme by using elementary physical arguments such as momentum, total energy
conservation and entropy inequality.

First of all, we recall the Lagrangian hydrodynamics equations written using the sub-cell formalism

d 1
mca — LpeNpe - U, =0, (33a)
¢ peP(c)
d <
mcauc + F,. =0, (33b)
PEP(C)
d X
mcaEc + F,.-U, =0, (33¢)
PEP(c)

where, as defined previously, the sub-cell force F. is

Fye = LSTISNG + LS TSNS,

The time rate change of entropy associated with this scheme can be derived exactly in the same manner as in the previous
section. Then, we obtain the general Eq. (31) whatever the sub-cell force is. If we carefully observe the right-hand side of
(31), it appears clearly that the sub-cell force can be split into an isentropic and a viscous part as follows:
sentropi
F;Jscen ropic _ LIJCPCNpC7
F;'CSC"”S = Fpc — LycPcNp.
The isentropic part provides the isentropic work of the pressure since

Fye"™ P U, = PV (V - U),.
peP(0)

The viscous part is determined with the help of the entropy inequality. The substitution of the previous decomposition into
Eq. (31) leads to

do.

>0 viscous
e = B U, - U, (34)

peP(c)

m.T

To satisfy a local entropy inequality, the right-hand side of this equation must be positive. Therefore, we postulate the fol-
lowing constitutive relationship to construct the viscous sub-cell force

incscous _ poc(Up _ Uc), (35)

where D, is an arbitrary 2 x 2 positive matrix. This matrix is very important because it directly governs the entropy produc-
tion, namely the numerical dissipation inherent to the scheme. The phenomenological formula (35) is the most general lin-
ear form that we can use to model the viscous sub-cell force. This approach is analogous to the one used in non-equilibrium
thermodynamics to establish relation between fluxes and forces [16]. Eq. (35) is a constitutive relation because it links the
pressure forces and the velocity jump as follows:

~Dype(Uy — Ue) = Ly(IT5 = PN, + L (IT5 — PNy,

This formula can be viewed as a generic multi-dimensional Riemann problem. Once the matrix Dy, is known, the construc-
tion of the scheme is achieved by writing that it must ensure momentum and total energy conservation, that is the sub-cell
force must satisfy the balance equation

LpcPcNpe — Dpe (U, —U,) = 0.

PEP(c)

This last equation enables us to compute the point velocity U, and then deduce the nodal pressures.

We realize that using the sub-cell force formalism it is possible to construct many cell-centered schemes that share good
physical properties (conservativity and dissipation). The key point in designing these schemes is to know how to construct
the corner matrix Dp.. We note that our scheme and the scheme developed in [17] can be recast in this general formalism by
setting Dpc = M, for our scheme and D, = MPC for the Després—Mazeran scheme.

4. The acoustic GRP high-order extension

Concerning the high-order extension, many methods are available. For instance, one can perform a monotone piecewise
linear reconstruction for the pressure and the velocity using a slope limiter, followed by the solution of the Riemann problem
at nodes with the help of the nodal solver in which we employ the nodal extrapolated values of the pressure and the velocity.
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The time discretization is based on a two-steps Runge-Kutta procedure. Such a methodology has been successfully developed
in [30,31]. However, this approach is rather expensive since it needs a two-step integration in time. This point becomes par-
ticularly crucial when coupling the hydrodynamic scheme with more complex physics. For this reason, we prefer to use a
one-step time integrator based on the so-called GRP (Generalized Riemann problem) method of Ben-Artzi and Falcovitz
[5,6,4,7,26]. This methodology consists in solving the higher-order Riemann problem with piecewise linear polynomials,
whereby the approximate solution is given as a time power series expansion right at the interface, thus providing a numer-
ical flux for a high-order Godunov-type method. We focus on the acoustic approximation of the GRP method. This approx-
imation provides a framework in which the solution of the GRP is simple to compute and easy to handle. In the case of one-
dimensional Lagrangian hydrodynamics, this method has been completely derived in the monograph [7]. We recall it briefly
for sake of completeness. Then, we present the non-trivial extension of the acoustic GRP methodology to our two-dimen-
sional Lagrangian scheme.

4.1. The one-dimensional case

We recall the GRP methodology in the acoustic approximation for the one-dimensional Euler equations written in the
Lagrangian framework

d 1 du
Pat b X 0, (36a)
du aP
pdt — =0, (36b)
pdt (Pu) 0. (36¢)

Here, 4 is the material derivative and X denotes the Eulerian coordinate at time ¢ > 0 whose initial position is x. Its trajectory
is given by the kinematic equation

—=1u, X(0)=x.

In order to Hmimic what heis been done in the two-dimensional case, we discretize the previous eqHations oyer the moving

cell i(t) = X y(t), X3 () . Let /}n,ul" E be the mass average values of J.u,E over the cell Q] = X?f%, ?+% attimet = t".

We denote by A= 1 n t" the time increment and assume that the pressure and the velocity at time t" are piecewise linear,
thatis for X € X{';, X\\; and X =3 X['; + X,

i+]
uX, t"y =uf + sul (X — X7),
P(X,t") = P} + 6P} (X — X{),

where su! and 6P} denote the slopes.
The generic high-order Godunov-type scheme takes the form
1

1 1 n+y

n+d
m; o —E — At uH% - uif%2 =0, (37a)
1 1
m;(u! —ul) + At Pj‘jﬁ 7P:'ff =0, (37b)
h : i
mi(EF — BN + At (Pu):‘j - (Pu)fjf —0. (37¢)

This system is completed by the discrete trajectory equation

1
XI5 =Xl + A

i+3

in order to move the mesh.

Here, u"ﬁz, P"+2 and (Pu)71+2 are the fluxes at node X; i averaged over the time interval [t", t"*!]. The GRP scheme proceeds
to derive these mld point value analytically by resolvmg the generalized Riemann problem at each point (XL t") with a
high-order accuracy. These fluxes are calculated approximately

At du "
2 dr oy
At dp "
i3 ”7+7 dt

n+}
2
uz+1 qu + 5
i+

The total energy flux is deduced from the previous formulae by setting (Pu)?j = Pf:fu?:f.
2



2404 P.-H. Maire/Journal of Computational Physics 228 (2009) 2391-2425

In the previous formulae, uf,, and PHI are obtained by solving a classical Riemann problem at the interface XH] using the
extrapolated values of the pressure and the velocity computed from their piecewise linear profiles on each side of the
interface.

We can see that once a Riemann solver has been chosen, the GRP scheme is just to obtain the time derivatives & L,

& L To compute these time derivatives one has to solve the generalized Riemann problem for system (36) subject to

the piecewise linear initial data

@) + 0D X if X< 0,

®(X,0) =
X,0) Qi + 00X IfX>0

(38)

for ® = %,u, E .The associated Riemann problem is the initial value problem for (36) with the piecewise constant values ®;

and @ (zero slopes in (38)). Following [7], the associated Riemann solution is denoted R*(X/t, @, ®). It can be obtained
approximately or exactly. The initial structure of the solution ®(X, t) to (36) and (38) is determined by the associated Rie-
mann solution and is described asymptotically as

lim (2, ) = RM2, @, ®R), 4=X/t. (39)

The solution ®(X,t) to the generalized Riemann problem can be represented by an asymptotic expansion in terms of X and t
whose zero-order term is given by Eq. (39). To compute the time derivatives, it is sufficient to evaluate the first-order per-
turbation built into d(X,t) that is to evaluate

dp * d du * d

— =lim - P(0,t — =lim - u(0,¢t).

g Mg POn. g Mg
This problem, which corresponds to the linear GRP, is completely solved in the monograph [7].

For our application, instead of dealing with the general problem, we specialize to the acoustic case which is by far more
simple. This particular case is exposed in [7,26], we recall it not only for sake of completeness but also because we will use it
extensively to construct the two-dimensional high-order extension. Let us assume that the initial flow variables are all con-
tinuous at X =0 so that ®; = ®g, but we allow jumps in their slopes é®; # §®;. Hence, the GRP solution is continuous at
X =t=0. The waves emanating from the origin are just the characteristics curves

dX o dX dX
C:=>—=-a, C =0, C':=>—=aq,
dt dt dt
where a is the isentropic sound speed. These curves are displayed in Fig. 6. It is shown in [7] that u,P and their derivatives are
continuous not only across the contact discontinuity (characteristic ¢°) but also across the characteristics C*. Therefore, writ-

ing the continuity of the derivative of P along C*, i.e. & . =%+a%, fort - 0 one gets

ar oP * dp oP _
i —a X - dr L—aL X L., across C

@ *—s-aR P *: d—P + ag o across C*.
dt oX dt . oX i

Here, we have used the chain rule and express the derivative in two ways, approaching the characteristic from either side.
We have kept the two-sided notation (such as a;, ag, which are all equal) in the previous equations so that we can use them
in the numerical applications where ®; # ®; but ||®; — ®¢|| < 1. Knowing that the flow is isentropic, i.e. dP = a*dp, Eq. (36a)
is rewritten

®(X,0) =P + 6B, X B(X,0)=®p+ 60X

X

Fig. 6. Characteristic curves in the acoustic case ®; = ®g, ®; # 6Px.
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dp ) au
a =0. 40
atP (40)
We express & * using Eq. (36b). Hence, x e du * between ¢~ and ¢° and @ A du * between ¢° and C*. The

time derivatives € and ¢  are obtained with the help of Eq. (40). Replacing the spatial derivatives of pressure and veloc-
ity by the corresponding slopes, one gets

ap * du *
E + pLar a = —GL(5PL + pLaLéuL), (4]&)
ar * du *
G P d—lt’ — ag(6Pg — pRardUR). (41b)

Finally, the time derivatives for pressure and velocity at contact discontinuity satisfy a 2 x 2 linear system whose determi-
nant is always strictly positive. Its unique solution is written

dP *  ap(6Pg — Zgoug)Z, — ay (8P, + Z,ou;)Zg

. 7, +Zx : (42a)
du *  ay(oP+Z,duy) + ar(oPr — ZR(SuR) (42b)
dt B Z1 +2Zg

where Z = pa is the acoustic impedance. We notice that no information concerning the equation of state is needed for the
time derivatives computation, therefore this methodology can be also used when dealing with tabulated equation of state.

Now, we are in position to give a summary of our acoustic GRP method applied to the one-dimensional Lagrangian
hydrodynamics.

Step 0. Construct a piecewise linear representation of the velocity field and the pressure at time t" over the cell Q}
ul(X) =uf +sul (X — X{), P/(X)=P]+0P}(X—-X]).

This piecewise linear reconstruction can be computed using a least squares procedure [28]. The advantage of such a
procedure is that linear fields are preserved, even for irregular mesh. We shall introduce a classical limitation proce-
dure for the slope in order to achieve a monotonic piecewise linear reconstruction.
Step 1. Given the piecewise linear pressure and velocity at time t" over the cell Qf, we solve the Riemann problem for (36)
at each grid point X, to define the Riemann solution

n,n n .mn n n n noyn
Zu XHJ +Zi+1ui+1 X' P; : 7P» :

un i+ i1 il i+
il =
i3 i+ 7Y, VARAR '
npn n n ul n H
P, Z P1+1 i+ +Z:+1P i+ Z”Z,n+1 h n n X! I
i+l n n it1 il Ll i+l
2 Zl + 7}, -z +Z}, z

Here, we have written the solution corresponding to the approximate acoustic Riemann solver.
Step 2. Determine the time derivatives % L and ‘jj‘t’ i1 using (42) where the left (resp. right) state corresponds to the
cell @} (resp. ©},,), and compute the mid- -polnt values

el At du "
ul=u'i+—= -
H% ay ] 2 dt i+%
n
Pr=p, 4= At dp

'*1 T2 dt

i+

Step 3. Evaluate the new cell averages pn“ ,ut EM using the updating formulae
1

1 1 1 1
m; F At u?:; - u?fg =0,
i i
m (Uit — ul) + At Pfjﬁ - P?ff =0,
! :

i+}

mi(EY —EY) + At (Pu)™F — (Pu)?fé =0
2
and advance the grid with the help of the discrete kinematic equation.

We note that the above algorithm is slightly different from the one proposed in [7] in the sense that we are computing the
slopes using a least squares procedure (Step 0), whereas in the original approach the slopes are updated using the time deriv-



2406 P.-H. Maire/Journal of Computational Physics 228 (2009) 2391-2425

atives % 7, and % ' ,. This modification does not matter since high-order accuracy is still achieved. It has been done in the
. 2 2 . . .

perspective of the two-dimensional extension.

4.2. The two-dimensional case

With the previous algorithm in mind, we can develop the two-dimensional extension of the acoustic GRP method in the
framework of our two-dimensional cell-centered Lagrangian scheme. First, we give the main algorithm of the high-order dis-
cretization. Then, we detail the different steps.

4.2.1. GRP algorithm for the two-dimensional Lagrangian scheme

Let /%" Ul,E! be the mass average values of %,U, E over the cell Q7 at time t = t". We describe the GRP algorithm cor-

responding to the high-order discretization of our two-dimensional Lagrangian scheme. The description follows exactly the
same steps as those exposed previously for the one-dimensional scheme.

Step 0. Construct a piecewise monotone linear representation of the velocity field and the pressure over the cell Q7 at
time t"

UX)=U!+VU.- (X -X7),

P.(X) =P+ VP.- (X — X7)

where X} denotes the centroid of Q7, VU, and VP, are, respectively, the velocity and the pressure gradient in Q.
Step 1. Given the piecewise linear pressure and velocity at time t" over the cell Q, we solve the Riemann problem for the

two-dimensional gas dynamic equations at each point p. With the help of the nodal solver previously developed, deter-
mine the point velocity Uy and the nodal pressures IT,", IT;" as follows:

X
U= (M) L P(Xp)NE + MEUC(X])],

ceC(p)

Pe(Xp) — 15" = Z5" U} — Uc(X)] - N5,

Pe(XD) — 5" = Z5" (U — U (XD)] - NS™.

Here, the superscript n is used for geometrical quantities such as lengths and normals to emphasize the fact that they
are evaluated at time t".
Step 2. Determine the time derivatives U " dI “" apq dI ;’" and compute the mid-point values

dt p* dt p

n+l At du "
gt _gr At dU " (43a)
P P2 dt o,

1 A n-"
=gy 5 4T (43b)
cntl cn At dr "
Hﬁ :Hﬁ' +7 E R (43C)

p

We note that we have introduced the time derivatives corresponding exactly to the point velocity U, and the nodal
pressures I, IT; defined by the nodal solver.
Step 3. Compute the motion of the mesh thanks to the discrete kinematic equation

n+d
Xy — X)) = AtU, (44)
and update the geometrical quantities. Then, evaluate the new cell averages pglﬂ UM E™ using the updating
formulae
1 1 < 1 1 1 1 1
me ———— —At LIS 4 LVINGT U = o, (45a)
c Pe pePc) -
n+1 n 20 cn CJH% cn cn C~"+% cn
me (U™ —UY) + At Lo, PNG™ + LT NS =0, (45Db)
pep(e) -
n+1 n = cn c,n+% C c f-"+% cn “+%
me(Ef™ — E7) + At L", Ny, + LII; Ny - Uy 2 =0. (45c¢)
peP©) b

We note that the geometrical quantities have been used at time "% in Eq. (45a) in order to be compatible with the point

displacement (44). For the momentum and the total energy equations, we have used the geometrical quantities evaluated

at the beginning of the time step in order to rigorously ensure the conservativity of the scheme. We shall detail that later on.
In what follows, we are going to detail the construction of steps 0 and 2.
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4.2.2. Piecewise monotonone linear reconstruction

To achieve the piecewise linear monotone reconstruction of the pressure and velocity, we used a classical least squares
procedure [2,3], followed by a slope limitation procedure.

Let W = W(X) denotes a fluid variable (pressure or velocity components), we assume a linear variation for W in cell ¢

Wc(x) =W:+VW,. (X 7xc)- (46)

R
Here, W_ is the mean value of W in cell c and VW( is the gradient of W that we are looking for. We note that X, = Vi o XdVis
the cell centroid so that the reconstruction is conservative. The gradient in (46) is computed by imposing that

W(Xq) =W, ford e C(c),

where C(c) is the set of the neighboring cells of cell c. This problem is generally over-determined and thus the gradient is
obtain by using a least squares procedure. Hence, it is the solution of the following minimization problem:

. x 2
VW, = argmin Wa—-W,—-VW.- (Xq—Xo)]".

deC(c)
A straightforward computation shows that this solution is written

X
VW, =M" (Wy—W)(Xe, — Xo), (47)

deC(c)
where M, is the 2 x 2 matrix given by
>

M¢ = (Xd — Xc) ® (Xd — Xc).
deC(c)

We notice that M, is symmetric positive definite and thus always invertible. The main feature of this least squares procedure
is that it is valid for any type of unstructured mesh and moreover it preserves the linear fields. This last point is particularly
important in view of computing isentropic compression properly.

To preserve monotonicity, we limit the value that the gradient is allowed to take, using the Barth-Jespersen multi-dimen-
sional extension [3] of the van Leer’s classical method. For each cell, we introduce the slope limiter ¢, € [0, 1] and the limited
reconstructed field

W™ (X) = W, + ¢ VW, - (X — X,), (48)

where VW, denotes the approximate gradient given by (47). The coefficient ¢, is determined by enforcing the following local
monotonicity criterion

wmn < WM (X) < WM VX e c. (49)

Here, we have set WE““‘ = min(MiNngec(), W) and W™ = max(maxXgec(o), We). Since the reconstructed field is linear we note
that it is sufficient to enforce the following conditions at any point p € P(c)

W™ < WET(Xp) < WE (50)

so that the quantity W in the cell c does not lie outside the range of the average quantities in the neighboring cells. Thanks to
this formula, we can define the slope limiter as

d)c = min ¢c

pep(c) ' P

knowing that

8
Su % if We(X,) - W, >0,
min_yy,

bep = S ng(xw if We(X,) - W, <0,
"1 if W(X,)— W, =0.

Here, i denotes a real function that characterizes the limiter. By setting p(x) = min(1, x) we recover the Barth-Jespersen lim-
iter. We can also define a smoother -in the sense that it is more differentiable- limiter by setting u(x) = ijxixz. This limiter has
been introduced by Vankatakrishnan [42] in order to improve the convergence towards steady solutions for the Euler
equations.

These limiters are known to preserve two-dimensional linear fields provided that the neighboring cells whose cell-means
are actually involved in the limiting are chosen in a good neighborhood. The characterization of such a neighborhood has been
derived by Swartz in [40]. The definition is as follows: one has chosen a good neighborhood for a given central cell if and only
if the convex hull of the centroids of its associated neighbors contains that central cell. We make such a choice in performing
our limitation.
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4.2.3. Computation of the time derivatives 4 ', 4L " and 4 ™
Characteristic equations The first step for computing the time derivatives, consists in writing the characteristic equations
for the two-dimensional gas dynamics equations [20]. We recall that by using the nonconservative variables (P, U, o), the gas

dynamics equation can be written in nonconservative form

%+pa2V~U:O, (51a)
du 1

a0 (51b)
do

do_, (51¢)

where ¢ denotes the specific entropy. Let N = (Nx, Ny)" denote a particular vector of R?. The Jacobian matrix in the direction
N related to the previous system is written

(@) 1
0 pa*Nx pa*Ny 0

%0 0 ©0
AN=By 0 o0x

p
0 0 0 0

The eigenvalues are easily found to be 0 and +a||N||. Thus, we have two simple eigenvalues, which for ||[N|| =1 are 1=z*a
associated with acoustic waves, and 4 = 0 of multiplicity 2 associated with the entropy waves. To obtain the characteristic
equations in the direction N associated with the acoustic waves, we dot-multiply Eq. (51b) by +paN and add it to Eq.
(51a) to get

% +aVP-N + pa (zi_lt] -N+aV-U =0, associated with eigenvalue q, (52a)
dp du . L
a aVP-N — pa @ N-aV-U =0, associated with eigenvalue —a, (52b)

where N denotes any unit vector.

Construction of a nodal acoustic GRP solver. The second step consists in solving the acoustic GRP problem in the framework
of our nodal solver. At time t = t", let us consider a point p and assume that the flow variables in the surrounding cells are all
continuous at X = X,,. The pressure and the velocity are continuous and linear, but we allow jumps in their slopes, that is,
their slopes are piecewise constant. Let N denote the unit normal to the interface between cells c and d, see Fig. 7. In what
follows, we omit the superscript n related to time in order to simplify the notations. We assume that U, P and their deriv-
atives are continuous across the characteristics in the direction N associated with the acoustic waves. The time derivatives
are defined by setting

du __dU

a = im g X, (533

darm ¢ . . dP

@, lim lim 72 (X, — 1N, £), (53b)
d

di1 :limlimg(XernN,t), (53¢)

dt P t—m y—0 dt
where 7 > 0.
In the vicinity of X, and for t — t", the continuity of the derivative of P, &£ — aVP - N (resp. £+ aVP - N), across the char-
acteristic in the direction N associated with the eigenvalue —a (resp. a), leads to

drr ¢ c dpP
G pfac(vp)g.zv: i Cfac(VP)C-N, (54a)
d
‘Z—IZ +ag(VP)3-N = % +ag(VP),-N. (54b)
- d

P

As in the one-dimensional case, we express the derivatives in two ways, approaching the characteristic from either side. Here
we have set

(VP);

= lim lim VP(X, — . 1), (VP)4 = lim lim VP(X, + N, t).

" £ t—t" n—0
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Fig. 7. Generalized Riemann problem at point p.

The other notations are displayed in Fig. 8. With the help of Eq. (51b), we get

. du . du
(VPh==pe Gg + (VPh=—ps G
The time derivatives of pressure in the right-hand side of (54) are expressed thanks to Eq. (51a) and we finally obtain
C

it +Z a ‘N =—-a/[(VP).-N+Z.(V-U), (55a)
e e,
i ¢ du
ar —Zy4 a N =a4[(VP);-N —Z4(V - U),]. (55b)

s

p

In the left-hand sides of the previous equations the velocity divergence and the pressure gradient are computed thanks to the
piecewise linear reconstruction. We note the similarity of these equations with those obtained in the one-dimensional case,
see system (41). Subtracting (55a) from (55b) we get
, ) " #
dii dii du .
— —— =(ZAH+Z —— N-V* |
dt dt - ( ct+ d) 1% )

p p dtl’

where V* is defined as follows

o — _Gl(VP)e -N+Ze(V -U) ] + aa[(VP)g - N — Za(V - U)]
N Zc +Zd '

Comparing this result with the time derivative of the velocity obtained solving the one-dimensional acoustic GRP problem,
see Eq. (42b), we realize that V* can be viewed as the normal component of the one-dimensional solution of the acoustic GRP
problem in the direction of the unit normal N. Therefore, the time derivatives of the nodal pressures are equal if and only if
the projection of the time derivative of the node velocity onto the unit normal is equal to V*. Since in general 4V . N = V*,

. . . d
we have the discontinuity 4 = 41 .

Finally, for each face we introduce four time derivatives of the pressure, two for each node on each side of the edges, the
discontinuity of these time derivatives across the face implies the loss of momentum and total energy conservation, on the
contrary to the one-dimensional case. In what follows, we shall show how to compute these time derivatives by recovering
momentum and total energy conservation.

We study momentum conservation by writing the global balance of momentum without taking into account the bound-
ary conditions. The summation of the discrete momentum Eq. (45b) over all the cells leads to

< > X 2> X cn cn
U U = A (g + g - 8 i 4 g A
¢ pePc) — T T ¢ peP(c) p - p

Here, we have expressed the nodal pressures Hf,‘"*% H;"”% thanks to the the Taylor expansions (43b) and (43c). Switching the
summation over cells and the summation over nodes in the right-hand side of the previous equation, we get

> X X 22X X cn cn
Cmc(Ug+1 _ U?) — —At (Llcj,nH;nNgn + LgnHEnN;n) _ (Azt) L;n ij_lt—l N;n 4 Lg.n (fj_ItI ) Nlcj,n .
P ceC(p) P ceC(p) p p
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vy (B (@) v

¢ _ ac
qaG T @ 4 =T

dP (@)
). dt ),

Fo(X) = B!+ (VP), - (X = X{) Fy(X) =P +(VP)g- (X = X))
UX)=Ui+(VU),- (X = X7) N Ui X)=Ug+(VU);- (X = X7)

(JU)I) /)}p (=X N

dt

Fig. 8. Structure of the Generalized Riemann problem at point p in the direction of the unit normal N. Note that { = X - N is the variable in the direction of N.

By construction of the classical nodal solver, the term between parentheses in the right-hand side cancels. Then, momentum
conservation at the discrete level is ensured, provided that the term between brackets in the right-hand side cancels. There-
fore, we deduce the following sufficient condition to ensure discrete momentum conservation

> dim " dir "
L' M +h" g M =0 (56)

cec(p)

We claim that this condition also allows the conservation of total energy. The proof is left to the reader. We note that con-
dition (56) expresses the balance of the forces per unit time induced by the discontinuity of the time derivatives of the nodal
pressures. The times derivatives of the nodal pressures, 4 ;’" and 4 ;'" are linked to the time derivative of the point veloc-
ity, 9" with the help of the following equations:

dt p’
i " du "
TG N PN 2T U (57a)
am <" du o, o om
TN N PN 2T 0 (57b)

These equations are obtained writing the continuity of the derivatives of P, &£ — aVP - N;" and &£ — aVP - N.", across the char-
acteristics in the directions NI‘,'” and Ng” associated with the eigenvalue —a. Once more, this is done in the vicinity of X, and
for t — t" (refer to Fig. 9). We realize that the conjunction of (56) and (57) written for each cell surrounding point p, consti-
tutes a close set of equations that allows to determine the time derivatives. Substituting Eqs. (57a) and (57b) into the suf-

ficient condition (56), one obtains

p~

Fig. 9. Localization of the time derivatives of the nodal pressures and velocity at point p viewed from cell Q.
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o, U X (G (VP), + ZM(LE"NS™ + LS"NS™)(V - U) ]
Pode cl¥p ¢t P .

p ceC(p)

where G, and G, are the 2 x 2 matrices defined by
<
G, =27 [L;‘”(Ng” ® Ng”) +L"(N;" 9N, Gy = G,.
ceC(p)
We note that these matrices coincide with the matrices M, and M, introduced in the nodal solver in the case of the acoustic
approximation. Matrices G, and G, are symmetric positive definite, thus G, is always invertible and the time derivative of the

point velocity is written

du " 1 28 nie~c N Cnpge.n c,npgc,n
e @Z[Gy(VP). + Z{(Ly"N," + Ly"NG")(V - U) . (58)
p ceC(p)

The time derivatives of the nodal pressures are deduced from (57).

5. Time step limitation

For numerical applications, the time step is evaluated following two criteria. The first one is a standard CFL criterion
which guaranties heuristically the monotone behavior of the entropy. The second is more intuitive, but reveals very useful
in practice: we limit the variation of the volume of cells over one time step.

5.1. CFL criterion

We propose a CFL like criterion in order to ensure a positive entropy production in cell ¢ during the time step. At time t,,
for each cell c we denote by /7 the minimal value of the distance between two points of the cell. We define
;Ln
Atg = Cg mcin <

n’
aC

where C is a strictly positive coefficient and a. is the sound speed in the cell. The coefficient Cr is computed heuristically and
we provide no rigorous analysis which allows such formula. However, extensive numerical experiments show that Cx = 0.25
is a value which provides stable numerical results. We have also checked that this value is compatible with a monotone
behavior of entropy. The rigorous derivation of this criterion could be obtained by computing the time step which ensures
a positive entropy production in cell ¢ from time t" to t"*!.

5.2. Criterion on the variation of volume

We estimate the volume of the cell ¢ at t = t™! with the Taylor expansion
d

W“:W+awmmp
Here, the time derivative £V, is computed by using (10). Let Cy be a strictly positive coefficient, Cy €]0, 1[. We look for At
such that

Ve — Ve

————= <Gy
vr v

To do so, we define
LD
. %
Atv = CV min dicﬂ
¢ ‘mvc(t )
For numerical applications, we choose Cy = 0.1.
Last, the estimation of the next time step At™*! is given by
At™ = min(Atg, Aty, CyAt"), (59)

where At" is the current time step and Cy is a multiplicative coefficient which allows the time step to increase. We generally
set Cy = 1.01.

6. Numerical results

In this section, we present several test cases in order to validate our numerical scheme. For each problem, we use a perfect
gas equation of state which is taken to be of the form P = (y — 1)p¢, where y is the polytropic index. Most of the computa-
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tions have been performed using the Dukowicz approximation for the nodal solver, that is the coefficient I'; in the mass

swept flux is set equal to %] Each time the acoustic solver will be used, i.e. I'. = 0, it will be explicitly notified.

6.1. Sod problem

This problem is very well known and has been defined in [39]. It consists of a shock tube of unity length. The interface is
located at x = 0.5. At the initial time, the states on the left and the right sides of x = 0.5 are constant. The left state is a high
pressure fluid characterized by (p,,Pi,u;)=(1,1,0), the right state is a low pressure fluid defined by
(Pg-Pr,ug) = (0.125,0.1,0). The gamma gas law is defined by y=Z The computational domain is defined by
(x,y) € 10,1] x [0,0.1]. The initial mesh is a Cartesian grid with 100 x 2 equally spaced cells. The boundary conditions are
wall boundary conditions, that is, the normal velocity is set to zero at each boundary. The numerical results obtained with
our GRP acoustic Lagrangian scheme are presented in Fig. 10 as spatial distributions of velocity and density, with the numer-
ical solution plotted as discrete points, and the corresponding exact solution shown as solid lines. Monotonicity is ensured by
the Vankatakrishnan limiter. The numerical results show the classical improvement of the high-order solution relative to the
first-order one. We also note that our results are very similar to those obtained by Ben-Artzi and Falcovitz in [7].

6.2. Uniformly accelerated piston problem

This test case, taken from [25], describes the compression of a gas, initially at rest, by a uniformly accelerated piston. The
piston path is given by X, (t) = 1xt?, where a > 0. Let pq, Py and a, denote the constant density, pressure and sound speed of
the gas initially located on the right side of the piston. Using the method of characteristics, one can show that this problem
admits a smooth isentropic solution up to a critical time t. which corresponds to the crossings of the characteristics. The
critical time writes t. = -2- % and its corresponding X coordinate is X, = -2- % Knowing this critical time, the analytical solu-

K A A ) P+ K P+ K*
tion is written at time t € [0, t.[ for any X € %Ktz, aot
y—1
a(X,t) =ap +TK‘E(X, t),

u(X,t) = kt(X,t).

where a(X,t) denotes the sound speed at time t and coordinate X. Here, the function 7(X,t) is defined as follows

s
Y1, 1?5 2 X—agt

T(X,t) = —

We note that for X > aot the solution corresponds to the initial data. Pressure and density are computed using the fact that
the flow is isentropic. For numerical applications, we set k¥ =0.5, po=1, Pp=1 and y = % Thus, we have t. = 1.972 and
X. = 2.333. We have displayed in Fig. 11 snapshots of density for various times ranging from t = 0.1t. to t = 0.99t.. We note
the steepening of the density gradient at the head of the density profile, when reaching the critical time. This corresponds to
the shock formation. In what follows, we make use of this analytical solution to estimate the global spatial convergence of
our first and high-order schemes. For the high-order scheme, we also compare the Barth-Jespersen and the Vankatakrishnan
limiter. We briefly describe the methodology used in order to perform the global spatial convergence analysis. The compu-
tational domain is the interval [0,2] and the stopping time is t; = 1.5, which is obviously lower than the critical time. For a
grid whose mean zone size is Ax, let us denote by @2~ the analytical solution computed at time ¢ = t; and at the centroid

1 1
0.9+ “ B 0.9 4
08r 1 o8l ,
0.7+ d 4
0.7+ -
0.6 4
0.6} 4
0.5 4
0.5} 4
0.4} i
04} ]
0.3 4
0.2l i 0.3} g
b
0.1+ 4 0.2+
0 . . 041 . . .
0 0.6 0.8 1 0 0.2 0.4 0.6

X

Fig. 10. Solution of the shock tube flow at t = 0.2. Numerical versus analytical solution for the velocity (left) and the density (right).
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h i
Xi(ts) of the Lagrangian cell X; 1(t3),Xi+%(t3) . The numerical solution in this cell is written ¢#*. Then, we define for this grid

=

the asymptotic errors using l; and [, norms

o X A~ Ax
E’ = @i — @i¥|AXi,
i=1,..1
E = max [pf — ¢},
where [ is the total number of cells and AX; is the size of the Lagrangian cell at time ¢,. Following Kamm [22], we assume that
the asymptotic error for both norms is written

EM = C(AX)" + O((Ax)"),

where C is the spatial convergence coefficient, and q is the spatial convergence rate. Here, we explicitly assume that the inac-
curacy of the solution depends only on the characteristic scale used in the calculation, Ax. We have displayed in Table 1 the
results obtained for the density and the velocity using the first-order scheme. We note that the rate of convergence corre-
sponding to the [; norm is close to 0.9 whereas the I, convergence rate is close to 0.4. These values are consistent with the-
ory. The results computed with the high-order scheme are displayed in Tables 2 and 3. Table 2 corresponds to Barth—
Jespersen limiter and Table 3 to Vankatakrishnan limiter. The [, rate of convergence is close to 1.7 for Barth-Jespersen limiter
whereas it is close to 1.4 for Vankatakrishnan limiter. In both cases it is greater than 1, hence we get the expected high-order
convergence. It turns out that the Vankatakrishnan limiter is more diffusive than the Barth-Jespersen one. We note the dis-
continuous behavior of the I rate of convergence which is probably due to the discontinuity of the derivative of the solution
at X = apt.

6.3. Kidder’s isentropic compression

In [24], Kidder has analytically computed the solution of the self-similar isentropic compression of a shell filled with per-
fect gas. This analytical solution is particularly useful in order to assess the ability of a Lagrangian scheme to properly com-
pute an isentropic compression. More precisely, we want to check that our scheme does not produce spurious entropy
during the isentropic compression.

We briefly recall the main features of this solution in order to define the test case. Initially, the shell has the internal (resp.
external) radius r,, (resp. re). Let Py, Pe, pp,, and p, be the pressures and densities located at r, and r.. Since the compression is
isentropic, we define s = ”7 and we have p, = p. ‘,’,—‘: ", Let R(r,t) be the radius at time t > 0 of a fluid particle initially located at
radius r. Looking for a solttion of the gas dynamics equation under the form R(r,t) = h(t)r, using the isentropic feature of the
flow and setting y = 1 + 2, where v = 1, 2, 3 indicates planar, cylindrical or spherical symmetry, we finally get the self-similar
analytical solution for t € [0, 7]

2. R(rt
MMnm0=M0*woém)7
~d, Rt
_ R(r,t
P(R(r, ), ) = h(t) 7P, &J
22 t=0.1t,
e —
1=0.4t;
2p o ——
=0.7t,
ol A S—
2 1sl ]

Fig. 11. Analytical solution for the uniformly accelerated piston. Snapshots of density for t € [0.1¢t.,0.99¢.].
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Here, T denotes the focusing time of the shell which is written

s
A 2 2
T= ))71re7rb
- 2 27
2 a-a

where a? = syp?~! is the square gf the isentropic sound speed. The particular form of the polytropic index enables us to get
the analytical expression h(t) = 1- £ 2 which is valid for any t € [0, t[. Note that h(t) goes to zero when t goes to t, hence
T corresponds to the collapse of the shell on itself. For r € [ry, 1], the initial density and pressure, p,, Py, are defined by

1
2 2 2 2 71
0 Te—r y-1 r *rb b1
p(r) = Pyt Pe ;

-t -t
PO(r) = s(p°(r))’.

Note that the initial velocity is equal to zero since the shell is assumed to be initially at rest. The isentropic compression is
obtained imposing the following pressure laws at the internal and external faces of the shell:

%
=1

P(R(ry, t),t) = Pyh(t) 7,
P(R(re,t) t) — Peh(t)_%.

We point out that the velocity field is a linear function of the radius R which is a typical property of self-similar isentropic
compression.

For numerical applications, we consider a cylindrical shell characterized by r, = 0.9 and r. = 1. We set P, = 0.1, P. = 10,
and p, = 102, Due to cylindrical symmetry we have v = 2, hence y = 2. The previous values enables to get p, = 2.15 x 103,
s=10°and, T = 7.265 x 10> b

The initial computational domain is defined in polar coordinates by (r,0) € [0.9,1] x 0,%, where r =" (x> +y?) and
6 = arctan ¥ . The computational domain is paved using equally spaced zones in the radial and the angular directions. Kid-
der’s problem is run with the three following polar grids: 25 x 15, 50 x 30 and 100 x 60. The stopping time is chosen to be

Table 1

Convergence analysis related to density and velocity for the uniformly accelerated piston problem computed with the first-order scheme.

Ax Ef* a, E Qoo
Density

0.20E-01 0.11E-01 0.93 0.47E-01 0.45
0.10E-01 0.58E—-02 0.92 0.34E-01 0.45
0.50E—-02 0.31E-02 0.92 0.25E-01 0.42
0.25E-02 0.16E—02 0.93 0.19E-01 0.44
1.25E-03 0.85E-03 - 0.14E-01 -
Velocity

0.20E-01 0.98E—-02 0.87 0.54E-01 0.44
0.10E-01 0.54E—-02 0.90 0.40E-01 0.45
0.50E—-02 0.29E-02 0.91 0.29E-01 0.41
0.25E-02 0.15E-02 0.92 0.22E-01 0.43
1.25E-03 0.80E-03 - 0.16E-01 -
Table 2

Convergence analysis related to density and velocity for the uniformly accelerated piston problem computed with the Barth-Jespersen limiter.

Ax EjX q, Ej qi.
Density

0.20E-01 0.32E-03 1.62 0.60E—02 0.24
0.10E-01 0.10E-03 1.88 0.51E-02 1.82
0.50E—02 0.28E-04 1.76 0.14E-02 0.65
0.25E-02 0.83E-05 1.69 0.91E-03 0.66
1.25E-03 0.26E—-05 - 0.58E-03 -
Velocity

0.20E-01 0.36E-03 1.60 0.70E-02 0.23
0.10E-01 0.12E-03 1.88 0.60E—02 1.83
0.50E—-02 0.33E-04 1.75 0.17E-02 0.65
0.25E-02 0.97E-05 1.68 0.11E-02 0.66

1.25E-03 0.30E-05 - 0.68E—03 -
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Table 3
Convergence analysis related to density