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We present a high-order cell-centered Lagrangian scheme for solving the two-dimensional
gas dynamics equations on unstructured meshes. A node-based discretization of the
numerical fluxes for the physical conservation laws allows to derive a scheme that is com-
patible with the geometric conservation law (GCL). Fluxes are computed using a nodal sol-
ver which can be viewed as a two-dimensional extension of an approximate Riemann
solver. The first-order scheme is conservative for momentum and total energy, and satisfies
a local entropy inequality in its semi-discrete form. The two-dimensional high-order
extension is constructed employing the generalized Riemann problem (GRP) in the acous-
tic approximation. Many numerical tests are presented in order to assess this new scheme.
The results obtained for various representative configurations of one and two-dimensional
compressible fluid flows show the robustness and the accuracy of our new scheme.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

We are interested in solving the two-dimensional compressible gas dynamics equations written in the Lagrangian form.
In this paper, we aim to present an original high-order cell-centered scheme devoted to this task. This scheme consists of the
non-trivial high-order extension of the first-order Lagrangian scheme presented in [29]. The two-dimensional high-order
extension is constructed using the generalized Riemann problem (GRP) methodology, which was introduced by Ben-Artzi
and Falcovitz in [5,7] following the pioneering work of van Leer [41].

In Lagrangian hydrodynamics methods, a computational cell moves with the flow velocity. In practice, this means that the
cell vertices move with a computed velocity, the cell faces being uniquely specified by the vertex positions. This ensures that
there is no mass flux crossing the boundary of the Lagrangian moving cell. Thus, Lagrangian methods can capture contact
discontinuity sharply in multimaterial fluid flows. However, in the Lagrangian framework, one has to discretize not only
. All rights reserved.

mailto:maire@celia.u-bordeaux1.fr
http://www.celia.u-bordeaux1.fr/~maire
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


2392 P.-H. Maire / Journal of Computational Physics 228 (2009) 2391–2425
the gas dynamics equations but also the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the
physical conservation laws must be determined in a compatible way with the vertex velocity so that the geometric conser-
vation law (GCL) is satisfied, namely the rate of change of a Lagrangian volume has to be computed coherently with the node
motion. This critical requirement is the cornerstone of any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in which position, velocity and kinetic
energy are centered at points, while density, pressure and internal energy are within cells. The dissipation of kinetic energy
into internal energy through shock waves is ensured by an artificial viscosity term. Since the seminal works of von Neumann
and Richtmyer [43], and Wilkins [44], many developments have been made in order to improve the accuracy and the robust-
ness of staggered hydrodynamics [12,10,8]. More specifically, the construction of a compatible staggered discretization leads
to a scheme that conserves total energy in a rigorous manner [11,9].

We note also the recent development of a variational multi-scale stabilized approach in finite element computation of
Lagrangian hydrodynamics, where a piecewise linear approximation was adopted for the variables [36,35]. The case of
Q1/P0 finite element is studied in [37], where the kinematic variables are represented using a piecewise linear continuous
approximation, while the thermodynamic variables utilize a piecewise constant representation.

An alternative to the previous discretizations is to derive a Lagrangian scheme based on the Godunov method [21]. In
comparison to staggered discretizations, Godunov-type methods exhibit the good property of being naturally conservative,
they do not need an artificial viscosity and they allow a straightforward implementation of conservative remapping methods
when they are used in the context of the Arbitrary Lagrangian Eulerian (ALE) strategy. In the Godunov-type method ap-
proach, all conserved quantities, including momentum, and hence cell velocity are cell-centered. The cell-face quantities,
including a face-normal component of the velocity, are available from the solution of an approximate Riemann problem
at each cell face. However, it remains to determine the vertex velocity in order to move the mesh. In [1], Dukowicz has pro-
posed to use a weighted least squares algorithm to compute the vertex velocity by requiring that the vertex velocity pro-
jected in the direction of a face normal should equal the Riemann velocity on that face. It turns out that this algorithm is
capable of generating additional spurious components in the vertex velocity field. Hence, it leads to an artificial grid motion
which requires a very expensive treatment [19]. This flaw comes probably from the fact that the flux computation is not
compatible with the node displacement, and hence the GCL is not satisfied. An important achievement concerning the com-
patibility between flux discretization and vertex velocity computation has been introduced by Després and Mazeran [17]. In
this paper, they present a scheme in which the interface fluxes and the node velocity are computed coherently thanks to an
approximate Riemann solver located at the nodes. This original approach leads to a first-order conservative scheme which
satisfies a local semi-discrete entropy inequality. The multi-dimensional high-order extension of this scheme is developed in
[13]. A thorough study of the properties of the Després–Mazeran nodal solver shows a strong sensitivity to the cell aspect
ratio, refer to [29], which can lead to severe numerical instabilities. This drawback is critical for real-life Lagrangian compu-
tations in which the grid often contains high aspect ratio cells. To overcome this difficulty, Maire et al. [29] have proposed an
alternative scheme that successfully solves the aspect ratio problem and keeps the compatibility between fluxes discretiza-
tion and vertices velocity computation. This first-order scheme also conserves momentum, total energy, and fulfills a local
entropy inequality. Its main feature lies in the discretization of the pressure gradient, which is designed using two pressures
at each node of a cell, each nodal pressure being associated with the direction of the unit outward normals related to the
edges originating from the node. These nodal pressures are linked to the nodal velocity thanks to half-Riemann problems.

In the present paper, we describe the high-order extension of the previous cell-centered scheme. This high-order exten-
sion is derived using a one-step time integrator, based on the GRP method, which is cheaper than the classical two-steps
Runge–Kutta procedure. The present approach consists in solving the high-order Riemann problem with piecewise linear
polynomials, whereby the approximate solution is given as a time power series expansion right at the interface, thus pro-
viding a numerical flux for high-order Godunov methods. We have implemented the acoustic version of the GRP method,
and extended it to the framework of our two-dimensional approximate Riemann solver located at the node. Hence, we
get an acoustic generalized Riemann solver located at nodes, which enables us to compute the time derivatives of the nodal
velocity and pressures, needed for the high-order flux computation. This solver is simple, robust and can handle tabulated
equations of state provided that the isentropic sound speed is available. In addition, for one-dimensional flows aligned with
the grid, it recovers the one-dimensional acoustic GRP scheme derived by Ben-Artzi and Falcovitz in their monograph [7].

The remainder of this paper is structured as follows: the governing equations of Lagrangian hydrodynamics are described
in Section 2. For sake of completeness, the first-order discretization is revisited in Section 3. We also introduce the concept of
sub-cell forces, borrowed from the staggered discretization framework [11], in order to derive a general form of the cell-cen-
tered discretization. The acoustic GRP high-order extension of the scheme is detailed in Section 4. Criteria for time step lim-
itation are presented in Section 5. Extensive numerical experiments are reported in Section 6. They show not only the
robustness and the accuracy of the present method but also its ability to handle successfully complex two-dimensional
flows. More specifically, we show that our method satisfies the requirement of wavefront invariance and is able to compute
properly isentropic compression [10]. Concluding remarks and perspectives are given in Section 7.

2. Lagrangian hydrodynamics

Let D be an open subset of R2, filled with an inviscid ideal fluid and equipped with the orthonormal frame (0,X,Y) and the
orthonormal basis ðeX ; eYÞ. We also define the unit vector eZ ¼ eX � eY . We are interested in discretizing the equations of the
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Lagrangian hydrodynamics. It is convenient, from the point of view of subsequent discretization to write the unsteady com-
pressible gas dynamics equations in the control volume formulation which holds for an arbitrary moving control volume. In
the Lagrangian formalism the rates of change of mass, volume, momentum and total energy are computed assuming that the
computational volumes are following the material motion. This leads to the following set of equations:
d
dt

Z
VðtÞ

qdV ¼ 0; ð1aÞ

d
dt

Z
VðtÞ

dV �
Z

SðtÞ
U � N dS ¼ 0; ð1bÞ

d
dt

Z
VðtÞ

qUdV þ
Z

SðtÞ
PN dS ¼ 0; ð1cÞ

d
dt

Z
VðtÞ

qEdV þ
Z

SðtÞ
PU � N dV ¼ 0; ð1dÞ
where d
dt denotes the material, or Lagrangian, time derivative. Here, V(t) is the moving control volume, and S(t) its boundary.

q, U ¼ ðu;vÞt , P, E are the mass density, velocity, pressure and specific total energy of the fluid. N denotes the unit outward
normal vector to the moving boundary S(t). Eqs. (1a)–(1c) express the conservation of mass, momentum and total energy.
We note that volume variation Eq. (1b) is also named geometric conservation law (GCL) and, it is equivalent to the local kine-
matic equation
dX
dt
¼ U; Xð0Þ ¼ x; ð2Þ
where X stands for coordinates defining the control volume surface at time t > 0 and x stands for coordinates at time t = 0.
Then, X = X(x, t) is implicitly defined by the local kinematic equation, which is also called the trajectory equation. This en-
ables us to define the map
Mt : Vð0Þ ! VðtÞ
x # Xðx; tÞ;
where X is the unique solution of (2). With fixed t, this map advances each fluid particle from its position at time t = 0 to its
position at time t. Let J be the determinant of the Jacobian matrix of this map. Then, time differentiation of J gives the classical
equation [14]
dJ
dt
� Jr � U ¼ 0;
which is nothing but the local version of the GCL Eq. (1b).
The thermodynamical closure of the set of Eq. (1) is obtained by the addition of an equation of state which is taken to be of

the form
P ¼ Pðq; eÞ; ð3Þ
where the specific internal energy, e, is related to the specific total energy by e ¼ E� 1
2 kUk

2. The set of previous equations is
referred to as the Lagrangian integral form of the Euler equations and can be found in many papers [1].

Comment 1. We notice that Eq. (1a) implies that the mass of the control volume remains constant.
3. First-order spatial discretization

3.1. Notations and assumptions

Let us consider the physical domain V(0) that is initially filled with the fluid. We assume that we can map it by a set of
polygonal cells without gaps or overlaps. Each cell is assigned a unique index c, and is denoted by Xcð0Þ. Using theMt map
previously defined, we set XcðtÞ ¼ Mt ½Xcð0Þ�. Here, we assume that XcðtÞ is still a polygon, that is, the Mt map is a contin-
uous and linear function over each element of the mesh. Each point (vertex) of the mesh is assigned a unique index p and we
denote by PðcÞ the counterclockwise ordered list of points of cell c.

3.2. Face flux discretization for the polygonal cell XcðtÞ

To get the discrete evolution equations for the primary variables 1
q ;U; E
� �

we apply the control volume formulation (1) to
the polygonal cell XcðtÞ. Let mc denotes the mass of the cell: it is constant according to (1). For a flow variable /, we introduce
its mass averaged value over the cell XcðtÞ
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/c ¼
1

mc

Z
XcðtÞ

q/dV :
Then, system (1) is written
mc
d
dt

1
qc

� �
�
X

f2FðcÞ
Lc

f Uc
f � N

c
f ¼ 0; ð4aÞ

mc
d
dt

Uc þ
X

f2FðcÞ
Lc

f P
c
f Nc

f ¼ 0; ð4bÞ

mc
d
dt

Ec þ
X

f2FðcÞ
Lc

f ðPUÞcf � N
c
f ¼ 0: ð4cÞ
Here, we have used the index f to denote a generic face of the cell c, Lc
f is the length of this face and Nc

f its unit outward normal
and FðcÞ is the set of faces of cell c, cf. Fig. 1. We have also introduced the face fluxes Uc

f , Pc
f , ðPUÞcf which are defined asZ
Uc
f ¼

1
Lc

f f
UdS; ð5aÞ

Pc
f ¼

1
Lc

f

Z
f

PdS; ð5bÞ

ðPUÞcf ¼
1
Lc

f

Z
f

PUdS: ð5cÞ
The local kinematic equation in its discrete form at point p is written
d
dt

Xp ¼ Up; Xpð0Þ ¼ xp; ð6Þ
where Xp ¼ ðXp;YpÞt denotes the coordinates of point p at time t > 0, xp its initial position and Up its velocity.
System (4) represents the face flux discretization of the Lagrangian hydrodynamics equations for the discrete variables

1
qc
;Uc; Ec

� �
. In order to compute the time evolution of the flow variables, we need to calculate the face fluxes Uc

f , Pc
f and

ðPUÞcf . Moreover, we also need to compute the point velocity Up to move the mesh.

Comment 2. Eq. (4a) is not only a physical conservation law but also a geometrical one since mc
qc
¼ Vc , where Vc is the volume

of the cell c. The face flux Uc
f related to this equation must be computed consistently with the point velocity Up so that the

volume variation remains coherent with the mesh motion. This critical question is addressed in the next section.
3.3. Compatible discretization of the GCL

Since mc=qc ¼ Vc Eq. (4a) can be rewritten
dVc

dt
�
X

f2FðcÞ
Lc

f Uc
f � N

c
f ¼ 0:
The volume of cell c, Vc , is a function of the coordinates Xp of point p for p 2 PðcÞ. We compute this volume by performing the
triangular decomposition of the cell displayed in Fig. 2
Fig. 1. Notations related to the polygonal cell XcðtÞ.
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Vc ¼
1
2

X
p2PðcÞ

ðXp � Xpþ Þ � eZ :
The time differentiation of this equation leads to
dVc

dt
¼
X

p2PðcÞ

1
2
ðLpp�Npp� þ LppþNppþ Þ � Up; ð7Þ
where the lengths Lpp� , Lppþ and the unit outward normal Npp� , Nppþ are related to the edges ½p; p�� and ½p; pþ�, see Fig. 2. By
shifting indices in the previous summation, Eq. (7) becomes
dVc

dt
¼
X

p2PðcÞ
LppþNppþ �

1
2
ðUp þ Upþ Þ: ð8Þ
Now, the comparison between Eqs. (4a) and (8) shows that they are equivalent under the condition that the face velocity is
written
Uc
f ¼

1
2
ðUp þ Upþ Þ; ð9Þ
where the face f corresponds to the edge ½p; pþ�. We remark that this condition amounts to a linear interpolation of the veloc-
ity along the edge ½p; pþ�. The only way to satisfy the compatibility condition (9) consists in first computing the point velocity
Up then, deducing the face velocity Uc

f . By proceeding in this manner, the compatibility of the face discretization of the GCL
with the rate of change of the cell volume is ensured. Let us introduce the following notations (see Fig. 2)
Lc
p ¼

1
2

Lpp� ; Nc
p ¼ Npp� ;

Lc
�p ¼

1
2

Lppþ ; Nc
�p ¼ Nppþ ;
then, Eq. (7) writes:
dVc

dt
¼
X

p2PðcÞ
ðLc

pNc
p þ Lc

�pNc
�pÞ � Up: ð10Þ
Comment 3. Following Shashkov [38], we introduce ðr � UÞc the discrete divergence operator over cell c
ðr � UÞc ¼
1
Vc

Z
oXc

U � NdS:
Combining the previous results and this definition we get
ðr � UÞc ¼
1
Vc

dVc

dt
¼ 1

Vc

X
p2PðcÞ

ðLc
pNc

p þ Lc
�pNc

�pÞ � Up ¼
1
Vc

X
p2PðcÞ

LpcNpc � Up;
where Npc stands for the unit corner vector defined by LpcNpc ¼ Lc
pNc

p þ Lc
�pNc

�p. We have recovered the compatible discretiza-
tion of the divergence operator currently used in the derivation of the compatible Lagrangian hydrodynamics scheme [11].
Fig. 2. Triangular decomposition of the polygonal cell XcðtÞ.
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3.4. Computation of the momentum flux

To ensure consistency with the GCL discretization we propose to discretize the momentum flux by introducing two pres-
sures at each node p of cell c. These pressures are denoted Pc

p and Pc
�p, see Fig. 3, they can be seen as nodal pressures viewed

from cell c and related to the two edges impinging at node p. Using these nodal pressures, we propose the following defini-
tion of the discrete gradient operator over the cell c
ð$PÞc ¼
1
Vc

X
p2PðcÞ

Lc
pP

c
pNc

p þ Lc
�pP

c
�pNc

�p

� �
:

This definition is compatible with the previous result related to the discrete divergence operator. Using the discrete gradient
operator, the momentum equation is rewritten
mc
d
dt

Uc þ
X

p2PðcÞ
Lc

pP
c
pNc

p þ Lc
�pP

c
�pNc

�p

� �
¼ 0: ð11Þ
We have obtained a nodal flux discretization for the momentum equation which is equivalent to its face flux discretization
(4b) provided that the momentum face flux is written
Pc
f ¼

1
2
ðPc

�p þPc
pþ Þ:
Once again, we note that this condition amounts to a linear interpolation of the pressure along face f ¼ ½p; pþ�.
The examination of the right-hand side of Eq. (11) allows a mechanical interpretation by introducing the force
Fpc ¼ Lc
pP

c
pNc

p þ Lc
�pP

c
�pNc

�p: ð12Þ
This force is a sub-cell force related to point p and cell c. Using this definition, the momentum equation can also be written
mc
d
dt

Uc þ
X

p2PðcÞ
Fpc ¼ 0: ð13Þ
To close this section, we show how to express the nodal pressures. Since the velocity of the edges ½p; p�� and ½p; pþ�, in the
vicinity of point p, is equal to the nodal velocity Up, the nodal pressures are computed using the following half approximate
Riemann problems
Pc �Pc
p ¼ Zc

pðUp � UcÞ � Nc
p; ð14aÞ

Pc �Pc
�p ¼ Zc

�pðUp � UcÞ � Nc
�p: ð14bÞ
Here, Zc
p, Zc

�p are mass fluxes swept by the waves. To determine these coefficients we follow the approach suggested by Du-
kowicz [18] by setting
Zc
p ¼ qc½ac þ CcjðUp � UcÞ � Nc

pj�; ð15aÞ

Zc
�p ¼ qc½ac þ CcjðUp � UcÞ � Nc

�pj�; ð15bÞ
where ac is the local isentropic speed of sound and Cc is a material-dependent parameter that is given in terms of the density
ratio in the limit of very strong shocks. In the case of gamma law gas one gets Cc ¼ cþ1

2 . We note that for Cc ¼ 0, we recover
the classical acoustic approximation and the coefficients Zc

p and Zc
�p reduce to the acoustic impedance of cell c.
Fig. 3. Localization of the nodal pressures given by the half Riemann problems at point p viewed from cell Xc .
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Utilizing (14), the sub-cell force can be rewritten
Fpc ¼ LpcPcNpc �MpcðUp � UcÞ; ð16Þ
where LpcNpc ¼ Lc
pNc

p þ Lc
�pNc

�p is the corner vector related to point p and cell c, and Mpc ¼ Zc
pLc

pðN
c
p � Nc

pÞ þ Zc
�pLc

�pðN
c
�p � Nc

�pÞ is a
2 � 2 symmetric positive definite matrix. The second term in the right-hand side of Eq. (16) can be viewed as the tensorial
part of the sub-cell force.

Comment 4. We have introduced two pressures at node p, each pressure being associated with the unit outward normal
related to the two edges of cell c impinging at point p. Instead of that, one can introduce only one pressure at point p. This
pressure is determined by the half Riemann problem defined in the direction of the unit corner vector Npc
Pc �Ppc ¼ ZcðUp � UcÞ � Npc; ð17Þ
where Zc is the acoustic impedance of cell c.
This amounts to define only one nodal pressure Ppc for each cell that surrounds point p. Using the unit corner vector Npc

in the definition of the half Riemann problem, we have recovered the approach developed in [17]. The sub-cell force
corresponding to this single nodal pressure Ppc reads
bF pc ¼ LpcPpcNpc ¼ LpcPcNpc � bMpcðUp � UcÞ;
where bMpc ¼ LpcZcNpc � Npc is a 2 � 2 symmetric positive matrix. We note that this sub-cell force is always colinear to the
geometric direction Npc of the unit corner vector. Moreover, its tensorial part is different from the one of sub-cell force
Fpc. For numerical applications, it appears that the approach proposed in [17] exhibits a strong dependence to the cell aspect
ratio as it has been noticed in [29].
3.5. Computation of the total energy flux

The total energy flux computation is performed by using the previous mechanical interpretation based on the sub-cell
force Fpc. Thus, the time rate of change of total energy is equal to the summation of the works performed by the sub-cell
forces over the cell c
mc
d
dt

Ec þ
X

p2PðcÞ
Fpc � Up ¼ 0: ð18Þ
The substitution of the sub-cell force definition (12) in the previous equation leads to the following node flux discretization
of the total energy equation
mc
d
dt

Ec þ
X

p2PðcÞ
ðLc

pP
c
pNc

p þ Lc
�pP

c
�pNc

�pÞ � Up ¼ 0: ð19Þ
We claim that this node flux discretization is equivalent to the face flux discretization (4c) provided that the total energy flux
is written
ðPUÞcf ¼
1
2
ðPc

�pUp þPc
pþUpþ Þ:
3.6. Node flux discretization for the polygonal cell XcðtÞ

Gathering the results from previous sections, we write the semi-discrete evolution equations for the unknowns
1
qc
;Uc; Ec

� �

mc

d
dt

1
qc

� �
�
X

p2PðcÞ
ðLc

pNc
p þ Lc

�pNc
�pÞ � Up ¼ 0; ð20aÞ

mc
d
dt

Uc þ
X

p2PðcÞ
ðLc

pP
c
pNc

p þ Lc
�pP

c
�pNc

�pÞ ¼ 0; ð20bÞ

mc
d
dt

Ec þ
X

p2PðcÞ
ðLc

pP
c
pNc

p þ Lc
�pP

c
�pNc

�pÞ � Up ¼ 0: ð20cÞ
This system is based on a node flux discretization, it is equivalent to system (4) provided that the face fluxes are written
Uc
f ¼

1
2
ðUp þ Upþ Þ; ð21aÞ

Pc
f ¼

1
2
ðPc

�p þPc
pþ Þ; ð21bÞ

ðPUÞcf ¼
1
2
ðPc

�pUp þPc
pþUpþ Þ; ð21cÞ
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where face f represents the edge ½p; pþ�, see Fig. 3. We recall that the nodal pressures are expressed as a function of the node
velocity by using the half approximate Riemann problems (14). The displacement of the mesh is governed by the local kine-
matic equation written in discrete form at point p (6).

To close system (20) we need to determine the point velocity Up. This goal will be achieved next section constructing a
nodal solver.

3.7. Construction of a nodal solver

The aim of this section is to construct a nodal solver in order to compute the nodal velocity and the nodal pressures.
The evaluation of these nodal quantities relies on an argument of conservation concerning both momentum and total
energy.

3.7.1. Momentum and total energy conservation
First, let us show why the interface pressure on each face is not uniquely defined, contrary to the classical finite volume

approach. Consider the face [p,q] shared by the cells Xc and Xd. As it is displayed in Fig. 4, we have two nodal pressures on
[p,q] viewed from cell c: Pc

�p;P
c
q, and two nodal pressures on [p,q] viewed from cell d : Pd

p;P
d
�q. The nodal pressures related to

node p are written according to Eq. (14)
Pc �Pc
�p ¼ ZcðUp � UcÞ � Nc

�p;

Pd �Pd
p ¼ �ZdðUp � UdÞ � Nc

�p:
Note that here, in order to simplify the computations, we have used the acoustic approximate Riemann solver. Hence, Zc , Zd

denote the acoustic impedance of cells c and d.
By subtracting the second equation from the first one we obtain
Pd
p �Pc

�p ¼ ðZc þ ZdÞðUp � Nc
�p � VÞ; ð22Þ
where V is nothing but the normal component of the Riemann velocity
V ¼ ZcUc þ ZdUd

Zc þ Zd
� Nc

�p �
Pd � Pc

Zc þ Zd
:

This velocity corresponds to the one-dimensional solution of the acoustic Riemann problem in the direction of the unit nor-
mal Nc

�p. Eq. (22) shows that the nodal pressures are equal if and only if the projection of the node velocity onto the unit nor-
mal is equal to the one-dimensional normal component of the Riemann velocity. Since in general Up � Nc

�p – V, we have the
discontinuity Pd

p – Pc
�p. The discontinuity of these nodal pressures across the face implies the loss of momentum and total

energy conservation, on the contrary to the 1-D Riemann solver classical approach. We shall show hereafter how to recover
momentum and total energy conservation by imposing an additional constraint which will be the main ingredient to con-
struct the nodal solver.

To examine momentum conservation, let us write the global balance of momentum without taking into account the
boundary conditions. The summation of the momentum Eq. (13) over all the cells c leads to
d
dt

X
c

mcUc

 !
¼ �

X
c

X
p2PðcÞ

Fpc: ð23Þ
Fig. 4. Nodal pressures related to the face [p,q] shared by cells Xc and Xd .
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Switching the summation over cells and the summation over nodes in right-hand side of (23) one gets
d
dt

X
c

mcUc

 !
¼ �

X
p

X
c2CðpÞ

Fpc;
where CðpÞ is the set of the cells around point p. Then, momentum conservation is ensured provided that the sub-cell forces
satisfy the condition
X

c2CðpÞ
Fpc ¼ 0: ð24Þ
We claim that, if this condition is satisfied then total energy is also conserved. To demonstrate this property we perform the
summation of the total energy Eq. (18) over all the cells c
d
dt

X
c

mcEc

 !
¼ �

X
c

X
p2PðcÞ

Fpc � Up:
Then, we switch again the summation over cells and the summation over nodes in right-hand side to get
d
dt

X
c

mcEc

 !
¼ �

X
p

X
c2CðpÞ

Fpc

 !
� Up:
Due to (24) the term between parentheses in the right-hand side is null and the total energy is conserved.
We note that the sufficient condition (24) expresses the balance of the sub-cell forces around point p (refer to Fig. 5).

Using the definition of the sub-cell force it can be rewritten
X
c2CðpÞ
ðLc

pP
c
pNc

p þ Lc
�pP

c
�pNc

�pÞ ¼ 0: ð25Þ
Now, using the equation of the sub-cell force (16) in which nodal pressures are expressed thanks to the half Riemann prob-
lems, we obtain the final form
X

c2CðpÞ
½LpcPcNpc �MpcðUp � UcÞ� ¼ 0: ð26Þ
We recall that LpcNpc ¼ Lc
pNc

p þ Lc
�pNc

�p is the corner vector related to point p, cell c and Mpc ¼ Zc
pLc

pðN
c
p � Nc

pÞ þ Zc
�pLc

�pðN
c
�p � Nc

�pÞ is a
2 � 2 symmetric positive definite matrix.

The sufficient condition to ensure momentum and total energy conservation exhibits, in its final form, a vectorial equa-
tion satisfied by the point velocity Up. This equation allows to construct a nodal solver.

3.7.2. The nodal solver
Setting Mp ¼

P
c2CðpÞMpc the system satisfied by the point velocity Up is written
MpUp ¼
X

c2CðpÞ
ðLpcPcNpc þMpcUcÞ: ð27Þ
We remark that the Mp matrix is symmetric positive definite by construction, hence it is always invertible. If we use the
acoustic approximation (coefficient Cc ¼ 0 in Eq. (15)), the mass swept fluxes reduce to the acoustic impedance, i.e.
Zc

p ¼ Zc
�p ¼ Zc , then the system (27) becomes linear and it admits a unique solution. It has been showed in [29] that this
Fig. 5. Notations related to the nodal solver at point p.
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two-dimensional acoustic solver reduces to the classical one-dimensional Godunov acoustic solver for one-dimensional
flows either for Cartesian or cylindrical grid aligned with the flow. In the general case corresponding to Cc – 0, system
(27) is non-linear due to the dependence of the mass swept fluxes to the point velocity. Therefore, Up has to be computed
by using an iterative procedure such as a fixed point algorithm. From a theoretical point of view, we cannot show conver-
gence of such an algorithm. However, in numerical applications, we have found that few iterations are needed to get the
convergence. Regardless of the type of approximation used, the expressions for the point velocity and the pressure fluxes
can be written
Up ¼ M�1
p

X
c2CðpÞ
ðLpcPcNpc þMpcUcÞ; ð28aÞ

Pc �Pc
p ¼ Zc

pðUp � UcÞ � Nc
p; ð28bÞ

Pc �Pc
�p ¼ Zc

�pðUp � UcÞ � Nc
�p: ð28cÞ
Comment 5. It is interesting to realize that this nodal solver only needs the knowledge of the isentropic speed of sound: it is
very easy to extend it to more general equation of state. The precise form of the equation of state, analytical or tabulated,
does not matter provided that the speed of sound is known.
3.8. Summary

In this section, we give a summary of the semi-discrete evolution equations that constitute a closed set for the unknowns
1
qc
;Uc; Ec

� �

mc

d
dt

1
qc

� �
�
X

p2PðcÞ
ðLc

pNc
p þ Lc

�pNc
�pÞ � Up ¼ 0;

mc
d
dt

Uc þ
X

p2PðcÞ
ðLc

pP
c
pNc

p þ Lc
�pP

c
�pNc

�pÞ ¼ 0;

mc
d
dt

Ec þ
X

p2PðcÞ
ðLc

pP
c
pNc

p þ Lc
�pP

c
�pNc

�pÞ � Up ¼ 0:
The discrete kinematic equation
d
dt

Xp ¼ Up; Xpð0Þ ¼ xp
enables us to compute the mesh motion. The point velocity Up and the nodal pressures are obtained thanks to the nodal
solver
Up ¼ M�1
p

X
c2CðpÞ
ðLpcPcNpc þMpcUcÞ;

Pc �Pc
p ¼ Zc

pðUp � UcÞ � Nc
p;

Pc �Pc
�p ¼ Zc

�pðUp � UcÞ � Nc
�p;
where the 2 � 2 matrices, Mpc and Mp, are written
Mpc ¼ Zc
pLc

pðN
c
p � Nc

pÞ þ Zc
�pLc

�pðN
c
�p � Nc

�pÞ; Mp ¼
X

c2CðpÞ
Mpc: ð29Þ
We recall that the swept mass fluxes Zc
p and Zc

�p are defined by (15).
Finally, we have obtained a first-order cell-centered discretization of the Lagrangian hydrodynamics equations based on a

node flux discretization. The fluxes and the mesh motion are computed in a compatible way thanks to a nodal solver that
uniquely provides the point velocity and the nodal pressures.

Comment 6. In the Lagrangian formalism, we have to consider two types of boundary conditions on the border of the
domain D: either the pressure or the normal component of the velocity is prescribed. Here, we do not detail the
implementation of these boundary conditions. Let us notice that they are consistent with our nodal solver. For a detailed
presentation about this topic the reader can refer to [29].
3.9. Entropy inequality

We show that our first-order Lagrangian scheme in its semi-discrete form satisfies a local entropy inequality. Using the
Gibbs formula [16], we compute the time rate of change of the specific entropy rc in cell c
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mcTc
drc

dt
¼ mc

dec

dt
þ Pc

d
dt

1
qc

� �� �
; ð30Þ
where Tc denotes the mean temperature of the cell. Thanks to the definition of the internal energy this equation is rewritten
mcTc
drc

dt
¼ mc

dEc

dt
� Uc �

dUc

dt
þ Pc

d
dt

1
qc

� �� �
:

We dot-multiply momentum Eq. (13) by Uc and subtract it from the total energy Eq. (18) to get
mc
dEc

dt
� Uc �

dUc

dt

� �
¼ �

X
p2PðcÞ

Fpc � ðUp � UcÞ:
The pressure work is computed by multiplying (20a) by Pc
Pc
d
dt

1
qc

� �
¼
X

p2PðcÞ
LpcPcNpc � Up ¼

X
p2PðcÞ

LpcPcNpc � ðUp � UcÞ:
Here, we have introduced the corner vector LpcNpc ¼ Lc
pNc

p þ Lc
�pNc

�p related to point p. The last line of the previous equation
comes from the fact that for a closed polygon we have
X

p2PðcÞ
LpcNpc ¼ 0:
Finally, the combination of the previous results leads to
mcTc
drc

dt
¼
X

p2PðcÞ
ðLpcPcNpc � FpcÞ � ðUp � UcÞ: ð31Þ
With the help of the half Riemann problems (14), we have previously seen that the sub-cell force can be written
Fpc ¼ LpcPcNpc �MpcðUp � UcÞ, using this, we deduce the final expression for the time rate of change of the specific entropy
within cell c
mcTc
drc

dt
¼
X

p2PðcÞ
MpcðUp � UcÞ � ðUp � UcÞ: ð32Þ
Since the 2 � 2 matrix Mpc is symmetric positive definite, the right-hand side of (32) is a quadratic form which is always po-
sitive. Consequently, our scheme is such that entropy increases in the cell c, that is drc

dt P 0. This important property ensures
that the kinetic energy is properly dissipated in internal energy. The examination of (32) right-hand side shows a tensorial
structure of the entropy dissipation rate which is quite similar to the artificial viscosity used in two-dimensional staggered
Lagrangian schemes [8,10].

Comment 7. We note that Eq. (31) is quite general and has been obtained regardless the expression of the sub-cell force.
Thus, it can be used to derive the entropy production corresponding to the scheme developed by Després and Mazeran [17].
In this case the sub-cell force is written bF pc ¼ LpcPcNpc � bMpcðUp � UcÞ where bMpc ¼ LpcZcNpc � Npc (refer to Comment 4).
This choice provides the entropy production
mcTc
drc

dt
¼
X

p2PðcÞ

bMpcðUp � UcÞ � ðUp � UcÞ:
The discrepancy corresponding to the entropy production between our scheme and the one proposed in [17] comes from the
definition of the corner matrices Mpc and bMpc. The entropy production of our scheme can only go to zero for uniform flows
because the matrix Mpc is definite positive. In the case of the scheme developed by Després and Mazeran, the entropy pro-
duction can go to zero even for non uniform flows such that ðUp � UcÞ ? Npc since kerð bMpcÞ is spanned by N?pc. This fact prob-
ably explains why the Després-Mazeran scheme can exhibit, for certain flows, severe numerical instabilities such as
hourglass modes [13,33].

Comment 8. We must admit that our entropy production term is always active even in the case of isentropic flows. For such
flows our scheme does not conserve entropy. This property is typical from Godunov-type schemes. However, this extra
entropy production can be dramatically decreased by using a high-order extension of the scheme as we shall see in Section
4.
3.10. Discretization based on sub-cell forces

Throughout this paper we have used the sub-cell forces formalism. This general formalism is very useful and has been
first introduced in [9,11] in the framework of staggered Lagrangian scheme. It turns out that this formalism can also be fruit-
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fully utilized in the cell-centered Lagrangian scheme framework. In this context, we show that the sub-cell force formalism is
the cornerstone to design a numerical scheme by using elementary physical arguments such as momentum, total energy
conservation and entropy inequality.

First of all, we recall the Lagrangian hydrodynamics equations written using the sub-cell formalism
mc
d
dt

1
qc

� �
�
X

p2PðcÞ
LpcNpc � Up ¼ 0; ð33aÞ

mc
d
dt

Uc þ
X

p2PðcÞ
Fpc ¼ 0; ð33bÞ

mc
d
dt

Ec þ
X

p2PðcÞ
Fpc � Up ¼ 0; ð33cÞ
where, as defined previously, the sub-cell force Fpc is
Fpc ¼ Lc
pP

c
pNc

p þ Lc
�pP

c
�pNc

�p:
The time rate change of entropy associated with this scheme can be derived exactly in the same manner as in the previous
section. Then, we obtain the general Eq. (31) whatever the sub-cell force is. If we carefully observe the right-hand side of
(31), it appears clearly that the sub-cell force can be split into an isentropic and a viscous part as follows:
F isentropic
pc ¼ LpcPcNpc;

Fviscous
pc ¼ Fpc � LpcPcNpc:
The isentropic part provides the isentropic work of the pressure since
X
p2PðcÞ

F isentropic
pc � Up ¼ PcVcðr � UÞc:
The viscous part is determined with the help of the entropy inequality. The substitution of the previous decomposition into
Eq. (31) leads to
mcTc
drc

dt
¼ �

X
p2PðcÞ

Fviscous
pc � ðUp � UcÞ: ð34Þ
To satisfy a local entropy inequality, the right-hand side of this equation must be positive. Therefore, we postulate the fol-
lowing constitutive relationship to construct the viscous sub-cell force
Fviscous
pc ¼ �DpcðUp � UcÞ; ð35Þ
where Dpc is an arbitrary 2 � 2 positive matrix. This matrix is very important because it directly governs the entropy produc-
tion, namely the numerical dissipation inherent to the scheme. The phenomenological formula (35) is the most general lin-
ear form that we can use to model the viscous sub-cell force. This approach is analogous to the one used in non-equilibrium
thermodynamics to establish relation between fluxes and forces [16]. Eq. (35) is a constitutive relation because it links the
pressure forces and the velocity jump as follows:
�DpcðUp � UcÞ ¼ Lc
pðP

c
p � PcÞNc

p þ Lc
�pðP

c
�p � PcÞNc

�p:
This formula can be viewed as a generic multi-dimensional Riemann problem. Once the matrix Dpc is known, the construc-
tion of the scheme is achieved by writing that it must ensure momentum and total energy conservation, that is the sub-cell
force must satisfy the balance equation
X

p2PðcÞ
LpcPcNpc � DpcðUp � UcÞ ¼ 0:
This last equation enables us to compute the point velocity Up and then deduce the nodal pressures.
We realize that using the sub-cell force formalism it is possible to construct many cell-centered schemes that share good

physical properties (conservativity and dissipation). The key point in designing these schemes is to know how to construct
the corner matrix Dpc . We note that our scheme and the scheme developed in [17] can be recast in this general formalism by
setting Dpc ¼ Mpc for our scheme and Dpc ¼ bMpc for the Després–Mazeran scheme.

4. The acoustic GRP high-order extension

Concerning the high-order extension, many methods are available. For instance, one can perform a monotone piecewise
linear reconstruction for the pressure and the velocity using a slope limiter, followed by the solution of the Riemann problem
at nodes with the help of the nodal solver in which we employ the nodal extrapolated values of the pressure and the velocity.
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The time discretization is based on a two-steps Runge-Kutta procedure. Such a methodology has been successfully developed
in [30,31]. However, this approach is rather expensive since it needs a two-step integration in time. This point becomes par-
ticularly crucial when coupling the hydrodynamic scheme with more complex physics. For this reason, we prefer to use a
one-step time integrator based on the so-called GRP (Generalized Riemann problem) method of Ben-Artzi and Falcovitz
[5,6,4,7,26]. This methodology consists in solving the higher-order Riemann problem with piecewise linear polynomials,
whereby the approximate solution is given as a time power series expansion right at the interface, thus providing a numer-
ical flux for a high-order Godunov-type method. We focus on the acoustic approximation of the GRP method. This approx-
imation provides a framework in which the solution of the GRP is simple to compute and easy to handle. In the case of one-
dimensional Lagrangian hydrodynamics, this method has been completely derived in the monograph [7]. We recall it briefly
for sake of completeness. Then, we present the non-trivial extension of the acoustic GRP methodology to our two-dimen-
sional Lagrangian scheme.

4.1. The one-dimensional case

We recall the GRP methodology in the acoustic approximation for the one-dimensional Euler equations written in the
Lagrangian framework
q
d
dt

1
q

� �
� ou

oX
¼ 0; ð36aÞ

q
du
dt
þ oP

oX
¼ 0; ð36bÞ

q
dE
dt
þ o

oX
ðPuÞ ¼ 0: ð36cÞ
Here, d
dt is the material derivative and X denotes the Eulerian coordinate at time t > 0 whose initial position is x. Its trajectory

is given by the kinematic equation
dX
dt
¼ u; Xð0Þ ¼ x:
In order to mimic what has been done in the two-dimensional case, we discretize the previous equations over the moving

cell XiðtÞ ¼ Xi�1
2
ðtÞ;Xiþ1

2
ðtÞ

h i
. Let 1

qn
i
;un

i ; E
n
i

� �
be the mass average values of 1

q ;u; E
� �

over the cell Xn
i ¼ Xn

i�1
2
;Xn

iþ1
2

h i
at time t ¼ tn.

We denote by Dt ¼ tnþ1 � tn the time increment and assume that the pressure and the velocity at time tn are piecewise linear,

that is for X 2 Xn
i�1

2
;Xn

iþ1
2

h i
and Xn

i ¼ 1
2 Xn

i�1
2
þ Xn

iþ1
2

� �

uðX; tnÞ ¼ un

i þ dun
i ðX � Xn

i Þ;
PðX; tnÞ ¼ Pn

i þ dPn
i ðX � Xn

i Þ;
where dun
i and dPn

i denote the slopes.
The generic high-order Godunov-type scheme takes the form
mi
1

qnþ1
i

� 1
qn

i

 !
� Dt u

nþ1
2

iþ1
2
� u

nþ1
2

i�1
2

� �
¼ 0; ð37aÞ

miðunþ1
i � un

i Þ þ Dt P
nþ1

2
iþ1

2
� P

nþ1
2

i�1
2

� �
¼ 0; ð37bÞ

miðEnþ1
i � En

i Þ þ Dt ðPuÞnþ
1
2

iþ1
2
� ðPuÞnþ

1
2

i�1
2

h i
¼ 0: ð37cÞ
This system is completed by the discrete trajectory equation
Xnþ1
iþ1

2
¼ Xn

iþ1
2
þ Dtu

nþ1
2

iþ1
2

in order to move the mesh.
Here, u

nþ1
2

iþ1
2

, P
nþ1

2
iþ1

2
and ðPuÞnþ

1
2

iþ1
2

are the fluxes at node Xiþ1
2

averaged over the time interval ½tn; tnþ1�. The GRP scheme proceeds
to derive these mid-point value analytically by resolving the generalized Riemann problem at each point ðXn

iþ1
2
; tnÞ with a

high-order accuracy. These fluxes are calculated approximately
u
nþ1

2
iþ1

2
¼ un

iþ1
2
þ Dt

2
du
dt

� �n

iþ1
2

;

P
nþ1

2
iþ1

2
¼ Pn

iþ1
2
þ Dt

2
dP
dt

� �n

iþ1
2

:

The total energy flux is deduced from the previous formulae by setting ðPuÞnþ
1
2

iþ1
2
¼ P

nþ1
2

iþ1
2

u
nþ1

2

iþ1
2

.
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In the previous formulae, un
iþ1

2
and Pn

iþ1
2

are obtained by solving a classical Riemann problem at the interface Xn
iþ1

2
using the

extrapolated values of the pressure and the velocity computed from their piecewise linear profiles on each side of the
interface.

We can see that once a Riemann solver has been chosen, the GRP scheme is just to obtain the time derivatives ou
ot

� 	n
iþ1

2
,

oP
ot

� 	n
iþ1

2
. To compute these time derivatives one has to solve the generalized Riemann problem for system (36) subject to

the piecewise linear initial data
UðX;0Þ ¼
UL þ dULX if X < 0;
UR þ dURX if X > 0



ð38Þ
for U ¼ 1
q ;u; E
� �

. The associated Riemann problem is the initial value problem for (36) with the piecewise constant values UL

and UR (zero slopes in (38)). Following [7], the associated Riemann solution is denoted RAðX=t;UL;URÞ. It can be obtained
approximately or exactly. The initial structure of the solution UðX; tÞ to (36) and (38) is determined by the associated Rie-
mann solution and is described asymptotically as
lim
t!0

Uðkt; tÞ ¼ RAðk;UL;URÞ; k ¼ X=t: ð39Þ
The solution U(X, t) to the generalized Riemann problem can be represented by an asymptotic expansion in terms of X and t
whose zero-order term is given by Eq. (39). To compute the time derivatives, it is sufficient to evaluate the first-order per-
turbation built into U(X, t) that is to evaluate
dP
dt

� �H

¼ lim
t!0

d
dt

Pð0; tÞ; du
dt

� �H

¼ lim
t!0

d
dt

uð0; tÞ:
This problem, which corresponds to the linear GRP, is completely solved in the monograph [7].
For our application, instead of dealing with the general problem, we specialize to the acoustic case which is by far more

simple. This particular case is exposed in [7,26], we recall it not only for sake of completeness but also because we will use it
extensively to construct the two-dimensional high-order extension. Let us assume that the initial flow variables are all con-
tinuous at X = 0 so that UL ¼ UR, but we allow jumps in their slopes dUL – dUR. Hence, the GRP solution is continuous at
X = t = 0. The waves emanating from the origin are just the characteristics curves
C� :
dX
dt
¼ �a; C0 :

dX
dt
¼ 0; Cþ :

dX
dt
¼ a;
where a is the isentropic sound speed. These curves are displayed in Fig. 6. It is shown in [7] that u,P and their derivatives are
continuous not only across the contact discontinuity (characteristic C0) but also across the characteristics C�. Therefore, writ-
ing the continuity of the derivative of P along C�, i.e. dP

dt

� 	
C� ¼

dP
dt � a oP

oX, for t ? 0 one gets
dP
dt

� �H

� aL
oP
oX

� �H

¼ dP
dt

� �
L
� aL

oP
oX

� �
L
; across C�

dP
dt

� �H

þ aR
oP
oX

� �H

¼ dP
dt

� �
R
þ aR

oP
oX

� �
R
; across Cþ:
Here, we have used the chain rule and express the derivative in two ways, approaching the characteristic from either side.
We have kept the two-sided notation (such as aL; aR, which are all equal) in the previous equations so that we can use them
in the numerical applications where UL – UR but kUL �URk � 1. Knowing that the flow is isentropic, i.e. dP ¼ a2dq, Eq. (36a)
is rewritten
Fig. 6. Characteristic curves in the acoustic case UL ¼ UR , dUL – dUR.
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dP
dt
þ qa2 ou

oX
¼ 0: ð40Þ
We express oP
oX

� 	H using Eq. (36b). Hence, oP
oX

� 	H ¼ �qL
du
dt

� 	H

between C� and C0 and oP
oX

� 	H ¼ �qR
du
dt

� 	H

between C0 and Cþ. The
time derivatives dP

dt

� 	
L and dP

dt

� 	
R are obtained with the help of Eq. (40). Replacing the spatial derivatives of pressure and veloc-

ity by the corresponding slopes, one gets
dP
dt

� �H

þ qLaL
du
dt

� �H

¼ �aLðdPL þ qLaLduLÞ; ð41aÞ

dP
dt

� �H

� qRaR
du
dt

� �H

¼ aRðdPR � qRaRduRÞ: ð41bÞ
Finally, the time derivatives for pressure and velocity at contact discontinuity satisfy a 2 � 2 linear system whose determi-
nant is always strictly positive. Its unique solution is written
dP
dt

� �H

¼ aRðdPR � ZRduRÞZL � aLðdPL þ ZLduLÞZR

ZL þ ZR
; ð42aÞ

du
dt

� �H

¼ � aLðdPL þ ZLduLÞ þ aRðdPR � ZRduRÞ
ZL þ ZR

; ð42bÞ
where Z = qa is the acoustic impedance. We notice that no information concerning the equation of state is needed for the
time derivatives computation, therefore this methodology can be also used when dealing with tabulated equation of state.

Now, we are in position to give a summary of our acoustic GRP method applied to the one-dimensional Lagrangian
hydrodynamics.

Step 0. Construct a piecewise linear representation of the velocity field and the pressure at time tn over the cell Xn
i

un
i ðXÞ ¼ un

i þ dun
i ðX � Xn

i Þ; Pn
i ðXÞ ¼ Pn

i þ dPn
i ðX � Xn

i Þ:

This piecewise linear reconstruction can be computed using a least squares procedure [28]. The advantage of such a
procedure is that linear fields are preserved, even for irregular mesh. We shall introduce a classical limitation proce-
dure for the slope in order to achieve a monotonic piecewise linear reconstruction.

Step 1. Given the piecewise linear pressure and velocity at time tn over the cell Xn
i , we solve the Riemann problem for (36)

at each grid point Xn
iþ1

2
to define the Riemann solution

un
iþ1

2
¼

Zn
i un

i Xn
iþ1

2

� �
þ Zn

iþ1un
iþ1 Xn

iþ1
2

� �
Zn

i þ Zn
iþ1

�
Pn

iþ1 Xn
iþ1

2

� �
� Pn

i Xn
iþ1

2

� �
Zn

i þ Zn
iþ1

;

Pn
iþ1

2
¼

Zn
i Pn

iþ1 Xn
iþ1

2

� �
þ Zn

iþ1Pn
i Xn

iþ1
2

� �
Zn

i þ Zn
iþ1

� Zn
i Zn

iþ1

Zn
i þ Zn

iþ1
un

iþ1 Xn
iþ1

2

� �
� un

i Xn
iþ1

2

� �h i
:

Here, we have written the solution corresponding to the approximate acoustic Riemann solver.
Step 2. Determine the time derivatives du

dt

� 	n

iþ1
2

and dP
dt

� 	n

iþ1
2

using (42) where the left (resp. right) state corresponds to the
cell Xn

i (resp. Xn
iþ1), and compute the mid-point values

u
nþ1

2
iþ1

2
¼ un

iþ1
2
þ Dt

2
du
dt

� �n

iþ1
2

;

P
nþ1

2
iþ1

2
¼ Pn

iþ1
2
þ Dt

2
dP
dt

� �n

iþ1
2

:

Step 3. Evaluate the new cell averages 1
qnþ1

i

;unþ1
i ; Enþ1

i

� �
using the updating formulae

mi
1

qnþ1
i

� 1
qn

i

 !
� Dt u

nþ1
2

iþ1
2
� u

nþ1
2

i�1
2

� �
¼ 0;

miðunþ1
i � un

i Þ þ Dt P
nþ1

2
iþ1

2
� P

nþ1
2

i�1
2

� �
¼ 0;

miðEnþ1
i � En

i Þ þ Dt ðPuÞnþ
1
2

iþ1
2
� ðPuÞnþ

1
2

i�1
2

h i
¼ 0

and advance the grid with the help of the discrete kinematic equation.

We note that the above algorithm is slightly different from the one proposed in [7] in the sense that we are computing the
slopes using a least squares procedure (Step 0), whereas in the original approach the slopes are updated using the time deriv-
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atives du
dt

� 	n

iþ1
2

and dP
dt

� 	n

iþ1
2
. This modification does not matter since high-order accuracy is still achieved. It has been done in the

perspective of the two-dimensional extension.

4.2. The two-dimensional case

With the previous algorithm in mind, we can develop the two-dimensional extension of the acoustic GRP method in the
framework of our two-dimensional cell-centered Lagrangian scheme. First, we give the main algorithm of the high-order dis-
cretization. Then, we detail the different steps.

4.2.1. GRP algorithm for the two-dimensional Lagrangian scheme
Let 1

qn
c
;Un

c ; E
n
c

� �
be the mass average values of 1

q ;U; E
� �

over the cell Xn
c at time t ¼ tn. We describe the GRP algorithm cor-

responding to the high-order discretization of our two-dimensional Lagrangian scheme. The description follows exactly the
same steps as those exposed previously for the one-dimensional scheme.

Step 0. Construct a piecewise monotone linear representation of the velocity field and the pressure over the cell Xn
c at

time tn
UcðXÞ ¼ Un
c þrUc � ðX � Xn

c Þ;
PcðXÞ ¼ Pn

c þ $Pc � ðX � Xn
c Þ;

where Xn
c denotes the centroid of Xn

c , rUc and $Pc are, respectively, the velocity and the pressure gradient in Xn
c .

Step 1. Given the piecewise linear pressure and velocity at time tn over the cell Xn
c , we solve the Riemann problem for the

two-dimensional gas dynamic equations at each point p. With the help of the nodal solver previously developed, deter-
mine the point velocity Un

p and the nodal pressures Pc;n
p , Pc;n

�p as follows:

Un
p ¼ ðMn

pÞ
�1
X

c2CðpÞ
½Ln

pcPcðXn
pÞN

n
pc þMn

pcUcðXn
pÞ�;

PcðXn
pÞ �Pc;n

p ¼ Zc;n
p ½U

n
p � UcðXn

pÞ� � N
c;n
p ;

PcðXn
pÞ �Pc;n

�p ¼ Zc;n
�p ½U

n
p � UcðXn

pÞ� � N
c;n
�p :

Here, the superscript n is used for geometrical quantities such as lengths and normals to emphasize the fact that they
are evaluated at time tn.

Step 2. Determine the time derivatives dU
dt

� 	n

p , dP
dt

� 	c;n

p and dP
dt

� 	c;n
�p and compute the mid-point values

Unþ1
2

p ¼ Un
p þ

Dt
2

dU
dt

� �n

p
; ð43aÞ

P
c;nþ1

2
p ¼ Pc;n

p þ
Dt
2

dP
dt

� �c;n

p
; ð43bÞ

P
c;nþ1

2
�p ¼ Pc;n

�p þ
Dt
2

dP
dt

� �c;n

�p

: ð43cÞ

We note that we have introduced the time derivatives corresponding exactly to the point velocity Up and the nodal
pressures Pc

p, Pc
�p defined by the nodal solver.

Step 3. Compute the motion of the mesh thanks to the discrete kinematic equation

Xnþ1
p � Xn

p ¼ DtUnþ1
2

p ð44Þ

and update the geometrical quantities. Then, evaluate the new cell averages 1
qnþ1

c
;Unþ1

c ; Enþ1
c

� �
using the updating

formulae

mc
1

qnþ1
c
� 1

qn
c

� �
� Dt

X
p2PðcÞ

L
c;nþ1

2
p Nc;nþ1

2
p þ L

c;nþ1
2

�p Nc;nþ1
2

�p

� �
� Unþ1

2
p ¼ 0; ð45aÞ

mcðUnþ1
c � Un

c Þ þ Dt
X

p2PðcÞ
Lc;n

p P
c;nþ1

2
p Nc;n

p þ Lc;n
�p P

c;nþ1
2

�p Nc;n
�p

� �
¼ 0; ð45bÞ

mcðEnþ1
c � En

c Þ þ Dt
X

p2PðcÞ
Lc;n

p P
c;nþ1

2
p Nc

p þ Lc
�pP

c;nþ1
2

�p Nc;n
�p

� �
� Unþ1

2
p ¼ 0: ð45cÞ

We note that the geometrical quantities have been used at time tnþ1
2 in Eq. (45a) in order to be compatible with the point

displacement (44). For the momentum and the total energy equations, we have used the geometrical quantities evaluated
at the beginning of the time step in order to rigorously ensure the conservativity of the scheme. We shall detail that later on.

In what follows, we are going to detail the construction of steps 0 and 2.
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4.2.2. Piecewise monotonone linear reconstruction
To achieve the piecewise linear monotone reconstruction of the pressure and velocity, we used a classical least squares

procedure [2,3], followed by a slope limitation procedure.
Let W 	WðXÞ denotes a fluid variable (pressure or velocity components), we assume a linear variation for W in cell c
WcðXÞ ¼Wc þ $Wc � ðX � XcÞ: ð46Þ
Here, Wc is the mean value of W in cell c and $Wc is the gradient of W that we are looking for. We note that Xc ¼ 1
Vc

R
Xc

X dV is
the cell centroid so that the reconstruction is conservative. The gradient in (46) is computed by imposing that
WcðXdÞ ¼Wd for d 2 CðcÞ;
where CðcÞ is the set of the neighboring cells of cell c. This problem is generally over-determined and thus the gradient is
obtain by using a least squares procedure. Hence, it is the solution of the following minimization problem:
$Wc ¼ argmin
X

d2CðcÞ
½Wd �Wc � $Wc � ðXd � XcÞ�2:
A straightforward computation shows that this solution is written
$Wc ¼ M�1
c

X
d2CðcÞ
ðWd �WcÞðXcv � XcÞ; ð47Þ
where Mc is the 2� 2 matrix given by
Mc ¼
X

d2CðcÞ
ðXd � XcÞ � ðXd � XcÞ:
We notice that Mc is symmetric positive definite and thus always invertible. The main feature of this least squares procedure
is that it is valid for any type of unstructured mesh and moreover it preserves the linear fields. This last point is particularly
important in view of computing isentropic compression properly.

To preserve monotonicity, we limit the value that the gradient is allowed to take, using the Barth–Jespersen multi-dimen-
sional extension [3] of the van Leer’s classical method. For each cell, we introduce the slope limiter /c 2 ½0;1� and the limited
reconstructed field
W lim
c ðXÞ ¼Wc þ /c$Wc � ðX � XcÞ; ð48Þ
where $Wc denotes the approximate gradient given by (47). The coefficient /c is determined by enforcing the following local
monotonicity criterion
Wmin
c 6W lim

c ðXÞ 6Wmax
c 8X 2 c: ð49Þ
Here, we have set Wmin
c ¼minðmind2CðcÞ;WcÞ and Wmax

c ¼maxðmaxd2CðcÞ;WcÞ. Since the reconstructed field is linear we note
that it is sufficient to enforce the following conditions at any point p 2 PðcÞ
Wmin
c 6W lim

c ðXpÞ 6Wmax
c ; ð50Þ
so that the quantity W in the cell c does not lie outside the range of the average quantities in the neighboring cells. Thanks to
this formula, we can define the slope limiter as
/c ¼ min
p2PðcÞ

/c;p
knowing that
/c;p ¼

l Wmax
c �Wc

Wc ðXpÞ�Wc

� �
if WcðXpÞ �Wc > 0;

l Wmin
c �Wc

Wc ðXpÞ�Wc

� �
if WcðXpÞ �Wc < 0;

1 if WcðXpÞ �Wc ¼ 0:

8>>><>>>:

Here, l denotes a real function that characterizes the limiter. By setting lðxÞ ¼minð1; xÞwe recover the Barth–Jespersen lim-
iter. We can also define a smoother -in the sense that it is more differentiable- limiter by setting lðxÞ ¼ x2þ2x

x2þxþ2. This limiter has
been introduced by Vankatakrishnan [42] in order to improve the convergence towards steady solutions for the Euler
equations.

These limiters are known to preserve two-dimensional linear fields provided that the neighboring cells whose cell-means
are actually involved in the limiting are chosen in a good neighborhood. The characterization of such a neighborhood has been
derived by Swartz in [40]. The definition is as follows: one has chosen a good neighborhood for a given central cell if and only
if the convex hull of the centroids of its associated neighbors contains that central cell. We make such a choice in performing
our limitation.
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4.2.3. Computation of the time derivatives dU
dt

� 	n

p, dP
dt

� 	c;n

p and dP
dt

� 	c;n
�p

Characteristic equations The first step for computing the time derivatives, consists in writing the characteristic equations
for the two-dimensional gas dynamics equations [20]. We recall that by using the nonconservative variables ðP;U;rÞ, the gas
dynamics equation can be written in nonconservative form
dP
dt
þ qa2r � U ¼ 0; ð51aÞ

dU
dt
þ 1

q
$P ¼ 0; ð51bÞ

dr
dt
¼ 0; ð51cÞ
where r denotes the specific entropy. Let N ¼ ðNX ;NYÞt denote a particular vector of R2. The Jacobian matrix in the direction
N related to the previous system is written
AðNÞ ¼

0 qa2NX qa2NY 0
NX
q 0 0 0

NY
q 0 0 0

0 0 0 0

0BBBB@
1CCCCA:
The eigenvalues are easily found to be 0 and �akNk. Thus, we have two simple eigenvalues, which for kNk ¼ 1 are k = ±a
associated with acoustic waves, and k = 0 of multiplicity 2 associated with the entropy waves. To obtain the characteristic
equations in the direction N associated with the acoustic waves, we dot-multiply Eq. (51b) by �qaN and add it to Eq.
(51a) to get
dP
dt
þ a$P � N þ qa

dU
dt
� N þ ar � U

� �
¼ 0; associated with eigenvalue a; ð52aÞ

dP
dt
� a$P � N � qa

dU
dt
� N � ar � U

� �
¼ 0; associated with eigenvalue � a; ð52bÞ
where N denotes any unit vector.
Construction of a nodal acoustic GRP solver. The second step consists in solving the acoustic GRP problem in the framework

of our nodal solver. At time t ¼ tn, let us consider a point p and assume that the flow variables in the surrounding cells are all
continuous at X ¼ Xp. The pressure and the velocity are continuous and linear, but we allow jumps in their slopes, that is,
their slopes are piecewise constant. Let N denote the unit normal to the interface between cells c and d, see Fig. 7. In what
follows, we omit the superscript n related to time in order to simplify the notations. We assume that U, P and their deriv-
atives are continuous across the characteristics in the direction N associated with the acoustic waves. The time derivatives
are defined by setting
dU
dt

� �
p
¼ lim

t!tn

dU
dt
ðXp; tÞ; ð53aÞ

dP
dt

� �c

�p
¼ lim

t!tn
lim
g!0

dP
dt
ðXp � gN; tÞ; ð53bÞ

dP
dt

� �d

p
¼ lim

t!tn
lim
g!0

dP
dt
ðXp þ gN; tÞ; ð53cÞ
where g > 0.
In the vicinity of Xp and for t ! tn, the continuity of the derivative of P, dP

dt � a$P � N (resp. dP
dt þ a$P � N), across the char-

acteristic in the direction N associated with the eigenvalue �a (resp. a), leads to
dP
dt

� �c

�p

� acð$PÞcp � N ¼
dP
dt

� �
c

� acð$PÞc � N; ð54aÞ

dP
dt

� �d

p

þ adð$PÞdp � N ¼
dP
dt

� �
d

þ adð$PÞd � N: ð54bÞ
As in the one-dimensional case, we express the derivatives in two ways, approaching the characteristic from either side. Here
we have set
ð$PÞc�p ¼ lim
t!tn

lim
g!0

$PðXp � gN; tÞ; ð$PÞdp ¼ lim
t!tn

lim
g!0

$PðXp þ gN; tÞ:



Fig. 7. Generalized Riemann problem at point p.
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The other notations are displayed in Fig. 8. With the help of Eq. (51b), we get
ð$PÞc�p ¼ �qc
dU
dt

� �
p
; ð$PÞdp ¼ �qd

dU
dt

� �
p
:

The time derivatives of pressure in the right-hand side of (54) are expressed thanks to Eq. (51a) and we finally obtain
dP
dt

� �c

�p
þ Zc

dU
dt

� �
p
� N ¼ �ac½ð$PÞc � N þ Zcðr � UÞc�; ð55aÞ

dP
dt

� �d

p
� Zd

dU
dt

� �
p
� N ¼ ad½ð$PÞd � N � Zdðr � UÞd�: ð55bÞ
In the left-hand sides of the previous equations the velocity divergence and the pressure gradient are computed thanks to the
piecewise linear reconstruction. We note the similarity of these equations with those obtained in the one-dimensional case,
see system (41). Subtracting (55a) from (55b) we get
dP
dt

� �d

p

� dP
dt

� �c

�p

¼ ðZc þ ZdÞ
dU
dt

� �
p

� N � _VH

" #
;

where _VH is defined as follows
_VH ¼ � ac½ð$PÞc � N þ Zcðr � UÞc� þ ad½ð$PÞd � N � Zdðr � UÞd�
Zc þ Zd

:

Comparing this result with the time derivative of the velocity obtained solving the one-dimensional acoustic GRP problem,
see Eq. (42b), we realize that _VH can be viewed as the normal component of the one-dimensional solution of the acoustic GRP
problem in the direction of the unit normal N. Therefore, the time derivatives of the nodal pressures are equal if and only if
the projection of the time derivative of the node velocity onto the unit normal is equal to _VH. Since in general dU

dt

� 	
p � N – _VH,

we have the discontinuity dP
dt

� 	c
�p – dP

dt

� 	d

p.

Finally, for each face we introduce four time derivatives of the pressure, two for each node on each side of the edges, the
discontinuity of these time derivatives across the face implies the loss of momentum and total energy conservation, on the
contrary to the one-dimensional case. In what follows, we shall show how to compute these time derivatives by recovering
momentum and total energy conservation.

We study momentum conservation by writing the global balance of momentum without taking into account the bound-
ary conditions. The summation of the discrete momentum Eq. (45b) over all the cells leads to
X
c
mcðUnþ1

c � Un
c Þ ¼ �Dt

X
c

X
p2PðcÞ

ðLc;n
p Pc;n

p Nc;n
p þ Lc;n

�p Pc;n
�p Nc;n

�p Þ �
ðDtÞ2

2

X
c

X
p2PðcÞ

Lc;n
p

dP
dt

� �c;n

p
Nc;n

p þ Lc;n
�p

dP
dt

� �c;n

�p
Nc;n

�p

" #
:

Here, we have expressed the nodal pressures P
c;nþ1

2
p , Pc;nþ1

2
�p thanks to the the Taylor expansions (43b) and (43c). Switching the

summation over cells and the summation over nodes in the right-hand side of the previous equation, we get
X
c
mcðUnþ1

c � Un
c Þ ¼ �Dt

X
p

X
c2CðpÞ
ðLc;n

p Pc;n
p Nc;n

p þ Lc;n
�p Pc;n

�p Nc;n
�p Þ �

ðDtÞ2

2

X
p

X
c2CðpÞ

Lc;n
p

dP
dt

� �c;n

p

Nc;n
p þ Lc;n

�p
dP
dt

� �c;n

�p

Nc;n
�p

" #
:



Fig. 8. Structure of the Generalized Riemann problem at point p in the direction of the unit normal N. Note that f ¼ X � N is the variable in the direction of N.
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By construction of the classical nodal solver, the term between parentheses in the right-hand side cancels. Then, momentum
conservation at the discrete level is ensured, provided that the term between brackets in the right-hand side cancels. There-
fore, we deduce the following sufficient condition to ensure discrete momentum conservation
X

c2CðpÞ
Lc;n

p
dP
dt

� �c;n

p

Nc;n
p þ Lc;n

�p
dP
dt

� �c;n

�p

Nc;n
�p

" #
¼ 0: ð56Þ
We claim that this condition also allows the conservation of total energy. The proof is left to the reader. We note that con-
dition (56) expresses the balance of the forces per unit time induced by the discontinuity of the time derivatives of the nodal
pressures. The times derivatives of the nodal pressures, dP

dt

� 	c;n

p and dP
dt

� 	c;n
�p are linked to the time derivative of the point veloc-

ity, dU
dt

� 	n

p , with the help of the following equations:
dP
dt

� �c;n

p
þ Zn

c
dU
dt

� �n

p
� Nc;n

p ¼ �an
c ½ð$PÞc � N

c;n
p þ Zn

c ðr � UÞc�; ð57aÞ

dP
dt

� �c;n

�p

þ Zn
c

dU
dt

� �n

p

� Nc;n
�p ¼ �an

c ½ð$PÞc � N
c;n
�p þ Zn

c ðr � UÞc�: ð57bÞ
These equations are obtained writing the continuity of the derivatives of P, dP
dt � a$P � Nc;n

p and dP
dt � a$P � Nc;n

�p , across the char-
acteristics in the directions Nc;n

p and Nc;n
�p associated with the eigenvalue �a. Once more, this is done in the vicinity of Xp and

for t ! tn (refer to Fig. 9). We realize that the conjunction of (56) and (57) written for each cell surrounding point p, consti-
tutes a close set of equations that allows to determine the time derivatives. Substituting Eqs. (57a) and (57b) into the suf-
ficient condition (56), one obtains
Fig. 9. Localization of the time derivatives of the nodal pressures and velocity at point p viewed from cell Xn
c .
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Gp
dU
dt

� �n

p

¼ �
X

c2CðpÞ
an

c ½G
c
pðrPÞc þ Zn

c ðL
c;n
p Nc;n

p þ Lc;n
�p Nc;n

�p Þðr � UÞc�;
where Gc
p and Gp are the 2 � 2 matrices defined by
Gc
p ¼ Zn

c ½L
c;n
p ðN

c;n
p � Nc;n

p Þ þ Lc;n
�p ðN

c;n
�p � Nc;n

�p Þ�; Gp ¼
X

c2CðpÞ
Gc

p:
We note that these matrices coincide with the matrices Mp and Mc
p introduced in the nodal solver in the case of the acoustic

approximation. Matrices Gc
p and Gp are symmetric positive definite, thus Gp is always invertible and the time derivative of the

point velocity is written
dU
dt

� �n

p
¼ �G�1

p

X
c2CðpÞ

an
c ½G

c
pðrPÞc þ Zn

c ðL
c;n
p Nc;n

p þ Lc;n
�p Nc;n

�p Þðr � UÞc�: ð58Þ
The time derivatives of the nodal pressures are deduced from (57).

5. Time step limitation

For numerical applications, the time step is evaluated following two criteria. The first one is a standard CFL criterion
which guaranties heuristically the monotone behavior of the entropy. The second is more intuitive, but reveals very useful
in practice: we limit the variation of the volume of cells over one time step.

5.1. CFL criterion

We propose a CFL like criterion in order to ensure a positive entropy production in cell c during the time step. At time tn,
for each cell c we denote by kn

c the minimal value of the distance between two points of the cell. We define
DtE ¼ CE min
c

kn
c

an
c
;

where CE is a strictly positive coefficient and ac is the sound speed in the cell. The coefficient CE is computed heuristically and
we provide no rigorous analysis which allows such formula. However, extensive numerical experiments show that CE ¼ 0:25
is a value which provides stable numerical results. We have also checked that this value is compatible with a monotone
behavior of entropy. The rigorous derivation of this criterion could be obtained by computing the time step which ensures
a positive entropy production in cell c from time tn to tnþ1.

5.2. Criterion on the variation of volume

We estimate the volume of the cell c at t ¼ tnþ1 with the Taylor expansion
Vnþ1
c ¼ Vn

c þ
d
dt

VcðtnÞDt:
Here, the time derivative d
dt Vc is computed by using (10). Let CV be a strictly positive coefficient, CV 2�0;1½. We look for Dt

such that
jVnþ1
c � Vn

c j
Vn

c

6 CV :
To do so, we define
DtV ¼ CV min
c

Vn
c

j d
dt VcðtnÞj

( )
:

For numerical applications, we choose CV ¼ 0:1.
Last, the estimation of the next time step Dtnþ1 is given by
Dtnþ1 ¼minðDtE;DtV ;CMDtnÞ; ð59Þ
where Dtn is the current time step and CM is a multiplicative coefficient which allows the time step to increase. We generally
set CM ¼ 1:01.

6. Numerical results

In this section, we present several test cases in order to validate our numerical scheme. For each problem, we use a perfect
gas equation of state which is taken to be of the form P ¼ ðc� 1Þqe, where c is the polytropic index. Most of the computa-
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tions have been performed using the Dukowicz approximation for the nodal solver, that is the coefficient Cc in the mass
swept flux is set equal to cþ1

2 . Each time the acoustic solver will be used, i.e. Cc ¼ 0, it will be explicitly notified.

6.1. Sod problem

This problem is very well known and has been defined in [39]. It consists of a shock tube of unity length. The interface is
located at x = 0.5. At the initial time, the states on the left and the right sides of x = 0.5 are constant. The left state is a high
pressure fluid characterized by ðqL; PL;uLÞ ¼ ð1;1;0Þ, the right state is a low pressure fluid defined by
ðqR; PR;uRÞ ¼ ð0:125;0:1;0Þ. The gamma gas law is defined by c ¼ 7

5. The computational domain is defined by
ðx; yÞ 2 ½0;1� � ½0;0:1�. The initial mesh is a Cartesian grid with 100 � 2 equally spaced cells. The boundary conditions are
wall boundary conditions, that is, the normal velocity is set to zero at each boundary. The numerical results obtained with
our GRP acoustic Lagrangian scheme are presented in Fig. 10 as spatial distributions of velocity and density, with the numer-
ical solution plotted as discrete points, and the corresponding exact solution shown as solid lines. Monotonicity is ensured by
the Vankatakrishnan limiter. The numerical results show the classical improvement of the high-order solution relative to the
first-order one. We also note that our results are very similar to those obtained by Ben-Artzi and Falcovitz in [7].

6.2. Uniformly accelerated piston problem

This test case, taken from [25], describes the compression of a gas, initially at rest, by a uniformly accelerated piston. The
piston path is given by XpðtÞ ¼ 1

2 jt2, where a > 0. Let q0, P0 and a0 denote the constant density, pressure and sound speed of
the gas initially located on the right side of the piston. Using the method of characteristics, one can show that this problem
admits a smooth isentropic solution up to a critical time tc which corresponds to the crossings of the characteristics. The
critical time writes tc ¼ 2

cþ1
a0
j and its corresponding X coordinate is Xc ¼ 2

cþ1
a2

0
j . Knowing this critical time, the analytical solu-

tion is written at time t 2 ½0; tc½ for any X 2 1
2 jt2; a0t
� �
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

aðX; tÞ ¼ a0 þ
c� 1

2
jsðX; tÞ;

uðX; tÞ ¼ jsðX; tÞ:
where a(X, t) denotes the sound speed at time t and coordinate X. Here, the function sðX; tÞ is defined as follows
sðX; tÞ ¼ � cþ 1
2c
ðtc � tÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ 1

2c

� �2

ðtc � tÞ2 � 2
c

X � a0t
j

� �s
:

We note that for X P a0t the solution corresponds to the initial data. Pressure and density are computed using the fact that
the flow is isentropic. For numerical applications, we set j = 0.5, q0 = 1, P0 = 1 and c ¼ 7

5. Thus, we have tc ¼ 1:972 and
Xc ¼ 2:333. We have displayed in Fig. 11 snapshots of density for various times ranging from t ¼ 0:1tc to t ¼ 0:99tc . We note
the steepening of the density gradient at the head of the density profile, when reaching the critical time. This corresponds to
the shock formation. In what follows, we make use of this analytical solution to estimate the global spatial convergence of
our first and high-order schemes. For the high-order scheme, we also compare the Barth–Jespersen and the Vankatakrishnan
limiter. We briefly describe the methodology used in order to perform the global spatial convergence analysis. The compu-
tational domain is the interval [0,2] and the stopping time is ts ¼ 1:5, which is obviously lower than the critical time. For a
grid whose mean zone size is Dx, let us denote by �uDx

i the analytical solution computed at time t ¼ ts and at the centroid
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x

 0.1
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Fig. 10. Solution of the shock tube flow at t = 0.2. Numerical versus analytical solution for the velocity (left) and the density (right).
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XiðtsÞ of the Lagrangian cell Xi�1
2
ðtsÞ;Xiþ1

2
ðtsÞ

h i
. The numerical solution in this cell is written uDx

i . Then, we define for this grid

the asymptotic errors using l1 and l1 norms
EDx
l1
¼
X

i¼1;...;I

j �uDx
i �uDx

i jDXi;

EDx
l1 ¼ max

i¼1;...;I
j �uDx

i �uDx
i j;
where I is the total number of cells and DXi is the size of the Lagrangian cell at time ts. Following Kamm [22], we assume that
the asymptotic error for both norms is written
EDx ¼ CðDxÞq þ OððDxÞqþ1Þ;
where C is the spatial convergence coefficient, and q is the spatial convergence rate. Here, we explicitly assume that the inac-
curacy of the solution depends only on the characteristic scale used in the calculation, Dx. We have displayed in Table 1 the
results obtained for the density and the velocity using the first-order scheme. We note that the rate of convergence corre-
sponding to the l1 norm is close to 0.9 whereas the l1 convergence rate is close to 0.4. These values are consistent with the-
ory. The results computed with the high-order scheme are displayed in Tables 2 and 3. Table 2 corresponds to Barth–
Jespersen limiter and Table 3 to Vankatakrishnan limiter. The l1 rate of convergence is close to 1.7 for Barth–Jespersen limiter
whereas it is close to 1.4 for Vankatakrishnan limiter. In both cases it is greater than 1, hence we get the expected high-order
convergence. It turns out that the Vankatakrishnan limiter is more diffusive than the Barth–Jespersen one. We note the dis-
continuous behavior of the l1 rate of convergence which is probably due to the discontinuity of the derivative of the solution
at X ¼ a0t.

6.3. Kidder’s isentropic compression

In [24], Kidder has analytically computed the solution of the self-similar isentropic compression of a shell filled with per-
fect gas. This analytical solution is particularly useful in order to assess the ability of a Lagrangian scheme to properly com-
pute an isentropic compression. More precisely, we want to check that our scheme does not produce spurious entropy
during the isentropic compression.

We briefly recall the main features of this solution in order to define the test case. Initially, the shell has the internal (resp.
external) radius rb (resp. re). Let Pb, Pe, qb, and qe be the pressures and densities located at rb and re. Since the compression is
isentropic, we define s ¼ Pe

qc
e
, and we have qb ¼ qe

Pb
Pe

� �1
c
. Let R(r,t) be the radius at time t > 0 of a fluid particle initially located at

radius r. Looking for a solution of the gas dynamics equation under the form Rðr; tÞ ¼ hðtÞr, using the isentropic feature of the
flow and setting c ¼ 1þ 2

m, where m = 1, 2, 3 indicates planar, cylindrical or spherical symmetry, we finally get the self-similar
analytical solution for t 2 ½0; s½
qðRðr; tÞ; tÞ ¼ hðtÞ�
2

c�1q0
Rðr; tÞ
hðtÞ

� �
;

uðRðr; tÞ; tÞ ¼ d
dt

hðtÞRðr; tÞ
hðtÞ ;

PðRðr; tÞ; tÞ ¼ hðtÞ�
2c
c�1P0

Rðr; tÞ
hðtÞ

� �
:

Fig. 11. Analytical solution for the uniformly accelerated piston. Snapshots of density for t 2 ½0:1tc ;0:99tc �.
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Here, s denotes the focusing time of the shell which is written
Table 1
Converg

Dx

Density
0.20E�
0.10E�
0.50E�
0.25E�
1.25E�

Velocity
0.20E�
0.10E�
0.50E�
0.25E�
1.25E�

Table 2
Converg

Dx

Density
0.20E�
0.10E�
0.50E�
0.25E�
1.25E�

Velocity
0.20E�
0.10E�
0.50E�
0.25E�
1.25E�
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 1

2
r2

e � r2
b

a2
e � a2

b

s
;

where a2 ¼ scqc�1 is the square of the isentropic sound speed. The particular form of the polytropic index enables us to get

the analytical expression hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t

s

� 	2
q

, which is valid for any t 2 ½0; s½. Note that h(t) goes to zero when t goes to s, hence

s corresponds to the collapse of the shell on itself. For r 2 ½rb; re�, the initial density and pressure, q0; P0, are defined by
q0ðrÞ ¼ r2
e � r2

r2
e � r2

b

qc�1
b þ r2 � r2

b

r2
e � r2

b

qc�1
e

� � 1
c�1

;

P0ðrÞ ¼ sðq0ðrÞÞc:
Note that the initial velocity is equal to zero since the shell is assumed to be initially at rest. The isentropic compression is
obtained imposing the following pressure laws at the internal and external faces of the shell:
PðRðrb; tÞ; tÞ ¼ PbhðtÞ�
2c
c�1;

PðRðre; tÞ; tÞ ¼ PehðtÞ�
2c
c�1:
We point out that the velocity field is a linear function of the radius R which is a typical property of self-similar isentropic
compression.

For numerical applications, we consider a cylindrical shell characterized by rb ¼ 0:9 and re ¼ 1. We set Pb ¼ 0:1, Pe ¼ 10,
and qe ¼ 10�2. Due to cylindrical symmetry we have m = 2, hence c = 2. The previous values enables to get qb ¼ 2:15� 10�3,
s = 105 and, s ¼ 7:265� 10�3.

The initial computational domain is defined in polar coordinates by ðr; hÞ 2 ½0:9;1� � 0; p6
� �

, where r ¼
ffiffi
ð

p
x2 þ y2Þ and

h ¼ arctan y
x

� 	
. The computational domain is paved using equally spaced zones in the radial and the angular directions. Kid-

der’s problem is run with the three following polar grids: 25 � 15, 50 � 30 and 100 � 60. The stopping time is chosen to be
ence analysis related to density and velocity for the uniformly accelerated piston problem computed with the first-order scheme.

EDx
l1 ql1 EDx

l1 q1

01 0.11E�01 0.93 0.47E�01 0.45
01 0.58E�02 0.92 0.34E�01 0.45
02 0.31E�02 0.92 0.25E�01 0.42
02 0.16E�02 0.93 0.19E�01 0.44
03 0.85E�03 – 0.14E�01 –

01 0.98E�02 0.87 0.54E�01 0.44
01 0.54E�02 0.90 0.40E�01 0.45
02 0.29E�02 0.91 0.29E�01 0.41
02 0.15E�02 0.92 0.22E�01 0.43
03 0.80E�03 – 0.16E�01 –

ence analysis related to density and velocity for the uniformly accelerated piston problem computed with the Barth–Jespersen limiter.

EDx
l1 ql1 EDx

l1 ql1

01 0.32E�03 1.62 0.60E�02 0.24
01 0.10E�03 1.88 0.51E�02 1.82
02 0.28E�04 1.76 0.14E�02 0.65
02 0.83E�05 1.69 0.91E�03 0.66
03 0.26E�05 – 0.58E�03 –

01 0.36E�03 1.60 0.70E�02 0.23
01 0.12E�03 1.88 0.60E�02 1.83
02 0.33E�04 1.75 0.17E�02 0.65
02 0.97E�05 1.68 0.11E�02 0.66
03 0.30E�05 – 0.68E�03 –



Table 3
Convergence analysis related to density and velocity for the uniformly accelerated piston problem computed with the Vankatakrishnan limiter.

Dx EDx
l1 ql1 EDx

l1 ql1

Density
0.20E�01 0.64E�03 1.45 0.78E�02 0.15
0.10E�01 0.23E�03 1.46 0.71E�02 1.18
0.50E�02 0.84E�04 1.44 0.31E�02 0.66
0.25E�02 0.31E�04 1.37 0.20E�02 0.68
1.25E�03 0.12E�04 - 0.12E�02 -

Velocity
0.20E�01 0.71E�03 1.44 0.92E�02 0.14
0.10E�01 0.26E�03 1.44 0.84E�02 1.18
0.50E�02 0.97E�04 1.43 0.37E�02 0.66
0.25E�02 0.36E�04 1.36 0.23E�02 0.68
1.25E�03 0.14E�04 – 0.15E�02 –
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very close to the focusing time setting ts ¼ 0:99s. The computations are performed with the high-order scheme utilizing the
Barth–Jespersen limiter. To estimate precisely the entropy production we define the entropy parameter
Fig. 12

Fig. 13.
scheme
a ¼ P
sqc :
We note that for a perfect isentropic compression a is equal to one.
. Kidder’s isentropic compression. Radial component of the velocity as function of radius versus analytical solution at stopping time ts ¼ 0:99s.

Kidder’s isentropic compression. Entropy parameter as function of radius versus analytical solution at stopping time ts ¼ 0:99s. High-order GRP
(left) and first-order scheme (right).



Fig. 14 

Initial skewed mesh for the Saltzman problem 

Fig. 15.Mesh and density map for the Saltzman problem at timet= 0.75.2416P.-H.
We have plotted in Fig. 12 the radial component of the velocity versus the analytical solution at the stopping time. We
note that the linear feature of the velocity is very well preserved. We can also see the convergence of the numerical solutions
toward the analytical one. In order to evaluate the entropy production, we have displayed in Fig. 13 the entropy parameter
respectively for the high-order GRP scheme (left) and for the first-order scheme (right). It turns out that the high-order GRP
extension decreases dramatically the value of the entropy parameter and reaches the analytical value. Therefore, we can con-
clude that our GRP high-order scheme is able to compute properly isentropic compressions. This result comes from the fact
that the entropy production within cell Xc is proportional to the difference between the point velocity, Up, and the extrap-
olated value of the velocity field at point p, UcðXpÞ. Since, the piecewise linear monotonic reconstruction used in our high-
order extension preserves linear fields, it turns out that the entropy production goes to zero. This approach has been used by
Christensen [15] in order to design an improved artificial viscosity in the framework of staggered scheme.

6.4. Saltzman problem

This test case taken from [19] is a well known difficult problem that allows to evaluate the robustness of Lagrangian
schemes. It consists of a strong piston-driven shock wave calculated using an initially nonuniform mesh. The computational
domain is defined by ðx; yÞ 2 ½0;1� � ½0;0:1�. The skewed initial mesh, displayed in Fig. 14, is obtained transforming a uniform
100 � 10 Cartesian grid with the mapping
Maire / Journal of Computational Physics 228 (2009)
xsk ¼ xþ ð0:1� yÞ sinðpxÞ;
ysk ¼ y:
The initial conditions are ðq0; e0;U0 ¼ 1;10�6;0Þ and the polytropic index is c ¼ 5
3. At x = 0, a unit inward normal velocity is

prescribed, the other boundaries are reflective wall. The analytical solution is a one-dimensional infinite strength shock wave
that moves at speed D ¼ 4

3 in the right direction. Thus, the shock wave hits the face x = 1 at time t = 0.75. Behind the shock, the
density is equal to 4. We run this test using the Vankatakrishnan limiter. We have displayed in Fig. 15 the density map and
the mesh at time t = 0.75 which corresponds to the first bounce of the shock wave. We note that the one-dimensional solu-
tion is very well preserved. Moreover, the location of the shock wave and the shock plateau are in good agreement with the
analytical solution. In Fig. 16, we have plotted the grid and the density map at time t = 0.9 which corresponds to the second
bounce. Although the mesh is more wavy than before, it still exhibits a good quality and the computation can be run until
time t = 0.93. Beyond this time, the computation stops due to too small time steps. These results, in which no spurious modes
appear, show the robustness of our high-order GRP scheme.

6.5. Noh problem

The Noh problem [32] is a well known test problem that has been used extensively to validate Lagrangian scheme in the
regime of strong shock waves. In this test case, a cold gas with unit density is given an initial inward radial velocity of mag-
2391–2425
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nitude 1. Then, a diverging cylindrical shock wave is generated which propagates at speed D ¼ 1
3. The density plateau behind

the shock wave reaches the value 16. In order to demonstrate the robustness and the accuracy of our GRP scheme, we shall
run this test with various options using various types of grids.

6.5.1. One-dimensional Noh problem on polar grids
In this paragraph, we run the Noh problem using polar grids with equi-angular zoning. The initial computational domain

is defined in polar coordinates by ðr; hÞ 2 ½0;1� � 0; p2
� �

.
First, we address the problem of wave front invariance. This requirement which has been introduced in [10] in the frame-

work of staggered schemes, points out that the artificial viscosity should have no effect along a wave front of constant phase.
In the case of our cell-centered scheme, there is no artificial viscosity, however we have to check that the numerical viscosity
inherent to our scheme satisfies this wave front invariance requirement. To examine this, we run the Noh problem with two
polar grids characterized by the same zoning in the radial direction and two different angular zonings. The density maps at
the stopping time t = 0.6 are displayed in Fig. 17. We note that the symmetry is perfectly preserved. The shock location and
the shock plateau agree with the analytical solution. In Fig. 17, we have plotted the density as function of radius for these two
Fig. 16. Mesh and density map for the Saltzman problem at time t = 0.9.

Fig. 17. Mesh and density map for the Noh problem at time t = 0.6. The computations are performed with 100 equal radial zones, Cc ¼ cþ1
2 , and the

Vankatakrishnan limiter. The left side computation corresponds to a mesh with 3 equal angular zones whereas the right side one corresponds to a nine
equal angular zones mesh.



different angular zonings. The small difference between the two curves shows that the wave front invariance requirement is
pretty well satisfied (see Fig. 18). Next, we study the sensitivity of our scheme to the parameter Cc which is used to built our
approximate solver. We ran computations with a 100 � 9 polar grid using the Vankatakrishan limiter and two different val-
ues of Cc , i.e. Cc ¼ cþ1

2 and Cc ¼ 0. The latter case corresponds to the acoustic version of our approximate Riemann solver. The
densities corresponding to these choices are displayed in Fig. 19 as a function of radius at the stopping time. The shock pla-
Fig. 18. Density as a function of radius for the Noh problem at stopping time t = 0.6. Three equal angular zones computation versus nine equal angular
zones computation.

Fig. 19. Density as a function of radius for the Noh problem at stopping time t = 0.6. Cc ¼ cþ1
2 computation versus Cc ¼ 0 computation.



teau and the shock location are almost the same, however in the acoustic case, we note the appearance of density peaks lo-
cated near the origin and the shock front. This peak occurrence is probably due to the fact that the acoustic formulation does
not produce enough dissipation.

Now, we study the sensitivity to the limiters running the Noh problem with a 100 � 9 polar grid and Cc ¼ cþ1
2 , using the

Barth–Jespersen and the Vankatakrishan limiters. The density versus radius is plotted in Fig. 20 for both computations. We
see almost no discrepancy between the two curves. This shows that both limiters acts in the same manner for infinite
strength shock waves.

Finally, we assess the convergence of our scheme computing the Noh problem with the three following polar grids:
100 � 9, 200 � 9 and 400 � 9. These computations are run using Cc ¼ cþ1

2 and the Vankatakrishnan limiter. We can observe
in Fig. 21 the convergence of the numerical solutions toward the analytical one.

6.5.2. Two-dimensional Noh problem on a 50 � 50 Cartesian grid
In order to assess the robustness of our scheme, we run the Noh problem on a 50 � 50 Cartesian grid. This configuration

leads to a more severe test case since the mesh is not aligned with the flow. The computation is performed using Cc ¼ cþ1
2 and

the Vankatakrishnan limiter. We have displayed the grid and the density map in Fig. 22. We note that the cylindrical sym-
metry is quite well preserved and that the shock is located at a circle whose radius is approximately 0.2. The results for this
test case are almost as good as those obtained by Campbell and Shashkov [8] using their staggered scheme with a mimetic
tensorial artificial viscosity.
Fig. 21. Density as a function of radius for the Noh problem at stopping time t = 0.6. Convergence analysis.
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6.5.3. Two-dimensional Noh problem on a non-conformal grid
We finish this section with the computation of the Noh problem on a non-conformal grid in order to illustrate the ability

of our scheme to handle unstructured grids. This non-conformal grid is constructed using a polar grid and adding to it one
leve